Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries: A review

被引:0
|
作者
Yang, Liu [1 ,2 ]
Li, Shuaining [1 ,2 ]
Zhang, Yuming [1 ]
Feng, Hongbo [2 ]
Li, Jiangpeng [2 ]
Zhang, Xinyu [2 ]
Guan, Huai [2 ]
Kong, Long [3 ]
Chen, Zhaohui [2 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Mesosci & Engn, Beijing 100190, Peoples R China
[3] Northwestern Polytech Univ, Inst Flexible Elect IFE, Xian 710129, Shaanxi, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2024年 / 97卷
关键词
Lithium-ion batteries; Silicon/carbon composites; Molecular scale; Nanoscale; Microscale; STABLE HIGH-CAPACITY; IN-SITU TEM; PRACTICAL APPLICATION; FREESTANDING ANODES; BUILDING-BLOCKS; CARBON NETWORKS; RECENT PROGRESS; POROUS SILICON; LOW-COST; PERFORMANCE;
D O I
10.1016/j.jechem.2024.05.029
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Silicon/carbon composites, which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon, will replace the traditional graphite electrodes for high-energy lithium-ion batteries. Various strategies have been designed to synthesize silicon/ carbon composites for tackling the issues of anode pulverization and poor stability in the anodes, thereby improving the lithium storage ability. The effect of the regulation method at each scale on the final negative electrode performance remains unclear. However, it has not been fully clarified how the regulation methods at each scale influence the final anode performance. This review will categorize the materials structure into three scales: molecular scale, nanoscale, and microscale. First, the review will examine modification methods at the molecular scale, focusing on the interfacial bonding force between silicon and carbon. Next, it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites. Lastly, the review will provide an analysis of microscale control approaches, focusing on the formation of composite particle with micron size and the utilization of micro-Si. This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:30 / 45
页数:16
相关论文
共 50 条
  • [1] Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries:A review
    Liu Yang
    Shuaining Li
    Yuming Zhang
    Hongbo Feng
    Jiangpeng Li
    Xinyu Zhang
    Huai Guan
    Long Kong
    Zhaohui Chen
    JournalofEnergyChemistry, 2024, 97 (10) : 30 - 45
  • [2] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Fei Dou
    Liyi Shi
    Guorong Chen
    Dengsong Zhang
    Electrochemical Energy Reviews, 2019, 2 : 149 - 198
  • [3] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Dou, Fei
    Shi, Liyi
    Chen, Guorong
    Zhang, Dengsong
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 149 - 198
  • [4] A review of silicon/carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries
    Wei, Jian
    Qin, Cong-Min
    Su, Huan
    Wang, Jia-Min
    Li, Xue-Ting
    Xinxing Tan Cailiao/New Carbon Materials, 2020, 35 (02): : 97 - 111
  • [5] Facile synthesis of silicon/carbon nanospheres composite anode materials for lithium-ion batteries
    Zhou, Yu
    Guo, Huajun
    Yang, Yong
    Wang, Zhixing
    Li, Xinhai
    Zhou, Rong
    Peng, Wenjie
    MATERIALS LETTERS, 2016, 168 : 138 - 142
  • [6] Progress of Silicon Carbon Composite Anode Structure for Lithium-ion Batteries
    Wu, Qiong
    Xu, Yongjie
    Zhong, Zhanxiong
    Liang, Junjie
    Li, Yao
    Cailiao Daobao/Materials Reports, 2024, 38 (11):
  • [7] Silicon/carbon nanocomposites used as anode materials for lithium-ion batteries
    Yong, Yingqiong
    Fan, Li-Zhen
    IONICS, 2013, 19 (11) : 1545 - 1549
  • [8] Silicon/carbon nanocomposites used as anode materials for lithium-ion batteries
    Yingqiong Yong
    Li-Zhen Fan
    Ionics, 2013, 19 : 1545 - 1549
  • [9] Effect of Graphene on the Performance of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries
    Ni, Chengyuan
    Xia, Chengdong
    Liu, Wenping
    Xu, Wei
    Shan, Zhiqiang
    Lei, Xiaoxu
    Qin, Haiqing
    Tao, Zhendong
    MATERIALS, 2024, 17 (03)
  • [10] Nanoscale Electrical Degradation of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries
    Kim, Seong Heon
    Kim, Yong Su
    Baek, Woon Joong
    Heo, Sung
    Yun, Dong-Jin
    Han, Sungsoo
    Jung, Heechul
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (29) : 24549 - 24553