On the theory of motion of a double mathematical pendulum

被引:0
|
作者
机构
[1] Martynyuk, A.A.
[2] Nikitina, N.V.
来源
Martynyuk, A.A. | 2000年 / Institut mekhaniki NAN Ukrainy卷 / 36期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
相关论文
共 50 条
  • [1] The theory of motion of a double mathematical pendulum
    Martynyuk, AA
    Nikitina, NV
    [J]. INTERNATIONAL APPLIED MECHANICS, 2000, 36 (09) : 1252 - 1258
  • [2] The Theory of Motion of a Double Mathematical Pendulum
    A. A. Martynyuk
    N. V. Nikitina
    [J]. International Applied Mechanics, 2000, 36 : 1252 - 1258
  • [3] Rotational motion of a mathematical pendulum
    Anakhaev, K. N.
    [J]. DOKLADY PHYSICS, 2015, 60 (06) : 249 - 254
  • [4] Rotational motion of a mathematical pendulum
    K. N. Anakhaev
    [J]. Doklady Physics, 2015, 60 : 249 - 254
  • [5] Chaotic trajectories of a double mathematical pendulum
    Moauro, V
    Negrini, P
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1998, 62 (05): : 827 - 830
  • [6] THE KAM THEORY OF DOUBLE PENDULUM
    管克英
    [J]. Annals of Applied Mathematics, 1998, (02) : 22 - 32
  • [7] On the Motion of One-Dimensional Double Pendulum
    Burian, S. N.
    Kalnitsky, V. S.
    [J]. EIGHTH POLYAKHOV'S READING, 2018, 1959
  • [8] DOUBLE PENDULUM VIBRATION MOTION IN FLUID FLOW
    Viba, Janis
    Eiduks, Maris
    Irbe, Martins
    [J]. 14TH INTERNATIONAL SCIENTIFIC CONFERENCE: ENGINEERING FOR RURAL DEVELOPMENT, 2015, : 434 - 439
  • [9] Study of homoclinic transversal intersections for the double mathematical pendulum
    Ivanov, AV
    [J]. CONTROL OF OSCILLATIONS AND CHAOS, VOLS 1-3, PROCEEDINGS, 2000, : 150 - 151
  • [10] Mathematical Theory of Fluids in Motion
    Feireisl E.
    [J]. Siberian Advances in Mathematics, 2018, 28 (4) : 233 - 264