Non-ideal magnetohydrodynamics on a moving mesh

被引:0
|
作者
Marinacci F. [1 ]
Vogelsberger M. [1 ]
Kannan R. [1 ,2 ]
Mocz P. [3 ]
Pakmor R. [4 ]
Springel V. [4 ,5 ,6 ]
机构
[1] Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, 02139, MA
[2] Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, 02138, MA
[3] Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, 08544, NJ
[4] Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, Heidelberg
[5] Zentrum für Astronomie der Universität Heidelberg, Astronomisches Recheninstitut, Mönchhofstr. 12-14, Heidelberg
[6] Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Garching
基金
美国国家航空航天局;
关键词
Magnetic fields; Magnetic reconnection; Methods: numerical; MHD; Stars: formation;
D O I
10.1093/MNRAS/STY397
中图分类号
学科分类号
摘要
In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfven waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-idealMHDimplementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation. © 2018 The Author(s).
引用
收藏
页码:2476 / 2492
页数:16
相关论文
共 50 条
  • [1] Non-ideal magnetohydrodynamics on a moving mesh
    Marinacci, Federico
    Vogelsberger, Mark
    Kannan, Rahul
    Mocz, Philip
    Pakmor, Ruediger
    Springel, Volker
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (02) : 2476 - 2492
  • [2] Non-ideal magnetohydrodynamics on a moving mesh II: Hall effect
    Zier, Oliver
    Mayer, Alexander C.
    Springel, Volker
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (03) : 8355 - 8368
  • [3] Non-ideal magnetohydrodynamics on a moving mesh II: Hall effect
    Zier, Oliver
    Mayer, Alexander C.
    Springel, Volker
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 527 (03) : 8355 - 8368
  • [4] Non-ideal magnetohydrodynamics on a moving mesh I: ohmic and ambipolar diffusion
    Zier, Oliver
    Springel, Volker
    Mayer, Alexander C.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (01) : 1563 - 1579
  • [5] OSCILLATION REGIMES IN IDEAL AND NON-IDEAL MAGNETOHYDRODYNAMICS
    LIFSHITS, AE
    FEDOROV, EN
    [J]. ZHURNAL TEKHNICHESKOI FIZIKI, 1985, 55 (04): : 770 - 772
  • [6] The physics of non-ideal general relativistic magnetohydrodynamics
    Andersson, N.
    Hawke, I
    Celora, T.
    Comer, G. L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (03) : 3737 - 3750
  • [7] Two special solutions of the non-ideal magnetohydrodynamics
    Feng, XS
    Liu, Y
    Wei, FS
    Ye, ZY
    [J]. CHINESE PHYSICS LETTERS, 2000, 17 (05) : 382 - 384
  • [8] Non-ideal magnetohydrodynamics of self-gravitating filaments
    Gutierrez-Vera, Nicol
    Grassi, Tommaso
    Bovino, Stefano
    Lupi, Alessandro
    Galli, Daniele
    Schleicher, Dominik R. G.
    [J]. ASTRONOMY & ASTROPHYSICS, 2023, 670
  • [9] Generalized cross-helicity in non-ideal magnetohydrodynamics
    Sharma, Prachi
    Yahalom, Asher
    [J]. JOURNAL OF PLASMA PHYSICS, 2023, 89 (06)
  • [10] Generalized χ and η Cross-Helicities in Non-Ideal Magnetohydrodynamics
    Sharma, Prachi
    Yahalom, Asher
    [J]. SYMMETRY-BASEL, 2023, 15 (12):