Research on finding annihilators of Boolean functions based the algebraic normal form fast transformations

被引:0
|
作者
Liu, Fu-Yun [1 ]
Xiao, Hong [1 ]
Xiao, Guo-Zhen [1 ]
机构
[1] State Key Lab. of Integrated Service Networks, Xidian Univ., Xi'an 710071, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:890 / 895
相关论文
共 50 条
  • [1] Annihilators and Algebraic Immunity of Symmetric Boolean Functions
    Peng, Jie
    Kan, Haibin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (06) : 1434 - 1440
  • [2] Count of Annihilators of Boolean Functions with Given Algebraic Immunity
    Du, Yusong
    Pei, Dingyi
    2010 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND INFORMATION SECURITY (WCNIS), VOL 1, 2010, : 640 - 643
  • [3] Quantum algorithms for learning the algebraic normal form of quadratic Boolean functions
    Xuexuan Hao
    Fengrong Zhang
    Shixiong Xia
    Yong Zhou
    Quantum Information Processing, 2020, 19
  • [4] Quantum algorithms for learning the algebraic normal form of quadratic Boolean functions
    Hao, Xuexuan
    Zhang, Fengrong
    Xia, Shixiong
    Zhou, Yong
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [5] FAST ALGEBRAIC IMMUNITY OF BOOLEAN FUNCTIONS
    Mesnager, Sihem
    Cohen, Gerard
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (02) : 373 - 377
  • [6] Construction of Boolean functions with maximum algebraic immunity and count of their annihilators at lowest degree
    Du YuSong
    Pei DingYi
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (04) : 780 - 787
  • [7] Construction of Boolean functions with maximum algebraic immunity and count of their annihilators at lowest degree
    YuSong Du
    DingYi Pei
    Science China Information Sciences, 2010, 53 : 780 - 787
  • [8] Construction of Boolean functions with maximum algebraic immunity and count of their annihilators at lowest degree
    DU YuSong* & PEI DingYi School of Mathematics and Information Sciences
    Science China(Information Sciences), 2010, 53 (04) : 780 - 787
  • [9] Fast Computing the Algebraic Degree of Boolean Functions
    Bakoev, Valentin
    ALGEBRAIC INFORMATICS, CAI 2019, 2019, 11545 : 50 - 63
  • [10] NEW NORMAL FORM OF BOOLEAN FUNCTIONS
    ODAKA, A
    FUJITA, H
    NOJIMA, S
    NARUSHIMA, H
    DISCRETE MATHEMATICS, 1976, 14 (03) : 269 - 271