Cross-modality person re-identification via multi-task learning

被引:0
|
作者
Huang, Nianchang [1 ]
Liu, Kunlong [1 ]
Liu, Yang [2 ]
Zhang, Qiang [1 ]
Han, Jungong [3 ]
机构
[1] Center for Complex Systems, School of Mechano-Electronic Engineering, Xidian University, Shaanxi, Xi'an,710071, China
[2] the State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an,710071, China
[3] Computer Science Department, Aberystwyth University, UK, SY23 3FL, United Kingdom
基金
中国国家自然科学基金;
关键词
Arts computing - Learning systems - Semantics;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Despite its promising preliminary results, existing cross-modality Visible-Infrared Person Re-IDentification (VI-PReID) models incorporating semantic (person) masks simply use these person masks as selection maps to separate person features from background regions. Such models do not dedicate to extracting more modality-invariant person body features in the VI-PReID network itself, thus leading to suboptimal results in VI-PReID. Differently, we aim to better capture person body information in the VI-PReID network itself for VI-PReID by exploiting the inner relations between person mask prediction and VI-PReID. To this end, a novel multi-task learning model is presented in this paper, where person body features obtained by person mask prediction potentially facilitate the extraction of discriminative modality-shared person body information for VI-PReID. On top of that, considering the task difference between person mask prediction and VI-PReID, we propose a novel task translation sub-network to transfer discriminative person body information, extracted by person mask prediction, into VI-PReID. Doing so enables our model to better exploit discriminative and modality-invariant person body information. Thanks to more discriminative modality-shared features, our method outperforms previous state-of-the-arts by a significant margin on several benchmark datasets. Our intriguing findings validate the effectiveness of extracting discriminative person body features for the VI-PReID task. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Cross-modality person re-identification via multi-task learning
    Huang, Nianchang
    Liu, Kunlong
    Liu, Yang
    Zhang, Qiang
    Han, Jungong
    PATTERN RECOGNITION, 2022, 128
  • [2] Cross-modality person re-identification via modality-synergy alignment learning
    Lin, Yuju
    Wang, Banghai
    MACHINE VISION AND APPLICATIONS, 2024, 35 (06)
  • [3] Multi-task Learning for Person Re-identification
    Gao, Hua
    Yu, Lingyan
    Huang, Yujiao
    Dong, Yiwei
    Chan, Sixian
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, ISCIDE 2017, 2017, 10559 : 259 - 268
  • [4] Dual Mutual Learning for Cross-Modality Person Re-Identification
    Zhang, Demao
    Zhang, Zhizhong
    Ju, Ying
    Wang, Cong
    Xie, Yuan
    Qu, Yanyun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 5361 - 5373
  • [5] Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning
    Ye, Mang
    Lan, Xiangyuan
    Leng, Qingming
    Shen, Jianbing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 9387 - 9399
  • [6] Cross-Modality Person Re-Identification via Modality Confusion and Center Aggregation
    Hao, Xin
    Zhao, Sanyuan
    Ye, Mang
    Shen, Jianbing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 16383 - 16392
  • [7] Improving person re-identification by multi-task learning
    Ou, Xinyu
    Ma, Qianzhi
    Wang, Yijin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (19) : 28257 - 28283
  • [8] Improving person re-identification by multi-task learning
    Xinyu Ou
    Qianzhi Ma
    Yijin Wang
    Multimedia Tools and Applications, 2019, 78 : 28257 - 28283
  • [9] Tensor Multi-Task Learning for Person Re-Identification
    Zhang, Zhizhong
    Xie, Yuan
    Zhang, Wensheng
    Tang, Yongqiang
    Tian, Qi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 2463 - 2477
  • [10] Improving person re-identification by multi-task learning
    Ling, Hefei
    Wang, Ziyang
    Li, Ping
    Shi, Yuxuan
    Chen, Jiazhong
    Zou, Fuhao
    NEUROCOMPUTING, 2019, 347 : 109 - 118