Influence of rare earth oxides (La2O3 or CeO2) on the microstructure and properties of Ni/Al composites fabricated by friction stir processing

被引:0
|
作者
Liu Y. [1 ]
Huang C. [1 ]
Xia C. [1 ]
Huang S. [1 ]
Liu F. [1 ]
Ke L. [1 ]
机构
[1] National Defence Key Discipline Laboratory of Light Alloy Processing Science and Techonology, Nanchang Hangkong University, Nanchang
来源
Huang, Chunping (hcp98106@163.com) | 2018年 / Beijing University of Aeronautics and Astronautics (BUAA)卷 / 35期
关键词
CeO[!sub]2[!/sub; Friction stir processing; La[!sub]2[!/sub]O[!sub]3[!/sub; Microstructure; Ni/Al composites; Property;
D O I
10.13801/j.cnki.fhclxb.20171228.003
中图分类号
学科分类号
摘要
The Ni/Al composites were fabricated by friction stir processing (FSP) by adding different kinds of rare earth oxides (La2O3 or CeO2). The effects of rare earth oxides on the microstructure and properties of Ni/Al composites were studied by SEM, EDS, XRD, electron probe microanalysis (EPMA) and tensile test at room temperature. The results show that Ni/Al composite has more obvious agglomerates of Ni in composite zone. The distribution of Ni power content and size increase in Ni-La2O3/Al and Ni-CeO2/Al composites. La2O3 or CeO2 can reinforce Al-Ni in-situ reaction to produce more reinforced phase. Ni-CeO2/Al composite has better uniform organization and the volume fraction of Al3Ni enhances in composite zone. The tensile strength of Ni/Al composite is significantly increased when adding La2O3 or CeO2. The tensile strength of Ni-La2O3/Al and Ni-CeO2/Al composites can reach 221 MPa and 238 MPa, respectively. Compared with the Ni/Al composites (166 MPa), the tensile strength has increased by 33.1% and 43.4%, respectively. © 2018, Editorial Office of Acta Materiae Compositae Sinica. All right reserved.
引用
收藏
页码:2489 / 2494
页数:5
相关论文
共 21 条
  • [1] Tian K., Zhao Y., Jiao L., Et al., Effects of in situ generated ZrB<sub>2</sub>, nano-particles on microstructure and tensile properties of 2024Al matrix composites, Journal of Alloys & Compounds, 594, 9, pp. 1-6, (2014)
  • [2] Liu Q., Ke L.M., Liu F.C., Et al., Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing, Materials and Design, 45, pp. 343-348, (2013)
  • [3] Li D.X., Zhou Z.X., Fan Z.Y., Al<sub>2</sub>O<sub>3P</sub>/Al composites with compatible interface by matrix alloying, Acta Metallurgica Sinica, 38, 6, pp. 602-608, (2002)
  • [4] Khorrami M.S., Samadi S., Janghorban Z., Et al., In-situ aluminum matrix composite produced by friction stir processing using FE particles, Materials Science & Engineering A, 641, pp. 380-390, (2015)
  • [5] Roy D., Ghosh S., Basumallick A., Et al., Preparation of Ti-aluminide reinforced in situ aluminum matrix composites by reactive hot pressing, Journal of Alloys and Compounds, 436, 1-2, pp. 107-111, (2007)
  • [6] Pan L.W., Lin W.J., Tang J.F., Et al., Preparation methods and research status of particles-reinforced aluminum matrix composite, Materials Review, 30, pp. 511-515, (2016)
  • [7] Zhao Y.T., Lin W.L., Kai X.Z., Et al., Microstructure and high temperature creep properties of nano Al<sub>2</sub>O<sub>3</sub>/6063Al composites by ultrasonic chemistry in-situ synthesis, Acta Materiae Compositae Sinica, 32, 5, pp. 1399-1407, (2015)
  • [8] Chen D.B., Zhao Y.T., Li G.R., Et al., Mechanism and kinetic model of in-situ TiB<sub>2</sub>/7055Al nanocomposites synthesized under high intensity ultrasonic field, Journal of Wuhan University of Technology, 26, 5, pp. 920-925, (2011)
  • [9] Huang C.P., Ke L.M., Xing L., Et al., Research process and prospect of friction stir processing, Rare Metal Materials and Engineering, 40, 1, pp. 183-188, (2011)
  • [10] Ma Z.Y., Friction stir processing technology: A review, Metallurgical & Materials Transactions A, 39, 3, pp. 642-658, (2008)