Exploring quantitative characteristics of patentable applications using random forests

被引:4
|
作者
University of Tsukuba, Information and Media Science, 1-2 Kasuga, Tsukuba, Ibaraki, Japan [1 ]
不详 [2 ]
不详 [3 ]
机构
关键词
D O I
Vienna, Austria
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] EXPLORING QUANTITATIVE CHARACTERISTICS OF PATENTABLE APPLICATIONS USING RANDOM FORESTS
    Yoshikane, Fuyuki
    Takei, Chizuko
    Tsuji, Keita
    Ikeuchi, Atsushi
    Suzuki, Takafumi
    14TH INTERNATIONAL SOCIETY OF SCIENTOMETRICS AND INFORMETRICS CONFERENCE (ISSI), 2013, : 728 - 741
  • [2] Exploring precrash maneuvers using classification trees and random forests
    Harb, Rami
    Yan, Xuedong
    Radwan, Essam
    Su, Xiaogang
    ACCIDENT ANALYSIS AND PREVENTION, 2009, 41 (01): : 98 - 107
  • [3] Addressing Measurement Error in Random Forests Using Quantitative Bias Analysis
    Jiang, Tammy
    Gradus, Jaimie L.
    Lash, Timothy L.
    Fox, Matthew P.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (09) : 1830 - 1840
  • [4] Two Applications of Random Spanning Forests
    Avena, L.
    Gaudilliere, A.
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (04) : 1975 - 2004
  • [5] Two Applications of Random Spanning Forests
    L. Avena
    A. Gaudillière
    Journal of Theoretical Probability, 2018, 31 : 1975 - 2004
  • [6] Quantitative Evaluation of Salient Deep Neural Network Features Using Random Forests
    Tewari, Aditya
    Gu, Fangsheng
    Grandidier, Frederic
    Stricker, Didier
    PROCEEDINGS 2018 IEEE 13TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2018,
  • [7] Diversified random forests using random subspaces
    Fawagreh, Khaled
    Gaber, Mohamed Medhat
    Elyan, Eyad
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8669 : 85 - 92
  • [8] Diversified Random Forests Using Random Subspaces
    Fawagreh, Khaled
    Gaber, Mohamed Medhat
    Elyan, Eyad
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2014, 2014, 8669 : 85 - 92
  • [9] Inference of Genetic Networks using Random Forests: A Quantitative Weighting Method for Gene Expression Data
    Kimura, Shuhei
    Sota, Kazuki
    Tokuhisa, Masato
    2022 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (IEEE CIBCB 2022), 2022, : 123 - 130
  • [10] Classification Using Streaming Random Forests
    Abdulsalam, Hanady
    Skillicorn, David B.
    Martin, Patrick
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (01) : 22 - 36