基于SHOX2和RASSF1A甲基化水平的机器学习算法预测早期肺腺癌病理类型

被引:0
|
作者
黄润棋 [1 ]
强光亮 [2 ]
刘益飞 [3 ]
史加海 [4 ]
机构
[1] 南通大学附属医院临床研究中心南通大学医学院
[2] 北京大学第三医院胸外科
[3] 南通大学附属医院病理科
[4] 南通大学附属医院胸心外科
关键词
肺腺癌; SHOX2; RASSF1A; 甲基化; 侵袭性;
D O I
暂无
中图分类号
TP181 [自动推理、机器学习]; R734.2 [肺肿瘤];
学科分类号
摘要
目的 探讨基于SHOX2和RASSF1A甲基化水平的机器学习算法预测早期肺腺癌病理类型的准确性。方法 回顾性分析2021年1月—2023年1月在南通大学附属医院接受肺部肿瘤切除手术患者的石蜡包埋(formalin-fixed paraffin-embedded,FFPE)标本。根据肿瘤的病理学分类,将患者分为3组:良性肿瘤/原位腺癌(benign tumor/adenocarcinoma in situ,BT/AIS)组、微浸润腺癌(minimally invasive adenocarcinoma,MIA)组和浸润性腺癌(invasive adenocarcinoma,IA)组。使用LungMe试剂盒通过甲基化特异性PCR(MS-PCR)测量FFPE标本的SHOX2和RASSF1A甲基化水平。以SHOX2和RASSF1A的甲基化水平为预测变量,采用机器学习算法(包括逻辑回归、XGBoost、随机森林、朴素贝叶斯)预测不同的肺腺癌病理类型,并构建网络服务器供临床使用。结果 共纳入272例患者,BT/AIS组、MIA组和IA组患者的平均年龄分别为57.97岁、61.31岁和63.84岁;女性患者占比分别为55.38%、61.11%和61.36%。基于SHOX2和RASSF1A甲基化水平建立的早期肺腺癌预测模型中,随机森林与XGBoost模型在预测各病理类型时表现良好。随机森林模型的C统计量在BT/AIS组、MIA组和IA组分别为0.71、0.72和0.78。XGBoost模型的C统计量在BT/AIS组、MIA组和IA组分别为0.70、0.75和0.77。朴素贝叶斯模型仅在IA组表现较为稳健,C统计量为0.73,具有一定的预测能力。逻辑回归模型在各组中的表现最差,对各组均无预测能力。通过决策曲线分析,随机森林模型在BT/AIS和MIA病理类型的预测中展示了较高的净收益,表明其在临床应用中具有潜在价值。结论 基于SHOX2和RASSF1A甲基化水平的机器学习算法预测早期肺腺癌病理类型具有较高的准确性。
引用
收藏
页码:67 / 72
页数:6
相关论文
共 18 条
  • [1] Global variations in lung cancer incidence by histological subtype in 2020: a population-based study
    Zhang, Yanting
    Vaccarella, Salvatore
    Morgan, Eileen
    Li, Mengmeng
    Etxeberria, Jaione
    Chokunonga, Eric
    Manraj, Shyam Shunker
    Kamate, Bakarou
    Omonisi, Abidemi
    Bray, Freddie
    [J]. LANCET ONCOLOGY, 2023, 24 (11): : 1206 - 1218
  • [2] The Diagnostic Potential of SHOX2 and RASSF1A DNA Methylation in Early Lung Adenocarcinoma
.[J].Gao Hong;Yang Jun;He Lu;Wang Wei;Liu Yanhong;Hu Yue;Ge Meiling;Ding Jie;Ye Qing.Frontiers in Oncology.2022,
  • [3] Detection of short stature homeobox 2 and RAS-associated domain family 1 subtype A DNA methylation in interventional pulmonology..[J].Wu Jian;Li Peng.World journal of clinical cases.2021, 20
  • [4] Analysis of the Prognostic Value and Gene Expression Mechanism of SHOX2 in Lung Adenocarcinoma.[J].Li Nanhong;Zeng Yu;Tai Min;Lin Biyun;Zhu Di;Luo Yi;Ren Xinle;Zhu Xiaoying;Li Lanlan;Wu Hongrong;Huang Jian.Frontiers in Molecular Biosciences.2021,
  • [5] Adenocarcinoma Spectrum Lesions of the Lung: Detection; Pathology and Treatment Strategies.[J].Succony L;Rassl DM;Barker AP;McCaughan FM;Rintoul RC.Cancer Treatment Reviews.2021, prepublish
  • [6] DNA Methylation in Solid Tumors: Functions and Methods of Detection
    Martisova, Andrea
    Holcakova, Jitka
    Izadi, Nasim
    Sebuyoya, Ravery
    Hrstka, Roman
    Bartosik, Martin
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)
  • [7] A prediction model based on DNA methylation biomarkers and radiological characteristics for identifying malignant from benign pulmonary nodules
    Xing, Wenqun
    Sun, Haibo
    Yan, Chi
    Zhao, Chengzhi
    Wang, Dongqing
    Li, Mingming
    Ma, Jie
    [J]. BMC CANCER, 2021, 21 (01)
  • [8] Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer
    Li, Nanhong
    Zeng, Yu
    Huang, Jian
    [J]. JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2020, 146 (06) : 1379 - 1393
  • [9] Predictive value of unmethylated RASSF1A on disease progression in non-small cell lung cancer patients receiving pemetrexed-based chemotherapy.[J].Qinfang Deng;Bo Su;Xianxiu Ji;Qiyu Fang;Songwen Zhou;Caicun Zhou.Cancer Biomarkers.2019, 3
  • [10] RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review
    Dubois, Fatemeh
    Bergot, Emmanuel
    Zalcman, Gerard
    Levallet, Guenaelle
    [J]. CELL DEATH & DISEASE, 2019, 10 (12)