FAIR Data Reuse–the Path through Data Citation

被引:5
|
作者
Paul Groth [1 ]
Helena Cousijn [2 ]
Tim Clark [3 ]
Carole Goble [4 ]
机构
[1] Informatics Institute, University of Amsterdam
[2] DataCite
[3] Data Science Institute, University of Virginia
[4] Department of Computer Science, The University of
关键词
D O I
暂无
中图分类号
学科分类号
摘要
One of the key goals of the FAIR guiding principles is defined by its final principle – to optimize data sets for reuse by both humans and machines. To do so, data providers need to implement and support consistent machine readable metadata to describe their data sets. This can seem like a daunting task for data providers, whether it is determining what level of detail should be provided in the provenance metadata or figuring out what common shared vocabularies should be used. Additionally, for existing data sets it is often unclear what steps should be taken to enable maximal, appropriate reuse. Data citation already plays an important role in making data findable and accessible, providing persistent and unique identifiers plus metadata on over 16 million data sets. In this paper, we discuss how data citation and its underlying infrastructures, in particular associated metadata, provide an important pathway for enabling FAIR data reuse.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] FAIR Data Reuse - the Path through Data Citation
    Groth, Paul
    Cousijn, Helena
    Clark, Tim
    Goble, Carole
    [J]. DATA INTELLIGENCE, 2020, 2 (1-2) : 78 - 86
  • [2] Data reuse and the open data citation advantage
    Piwowar, Heather A.
    Vision, Todd J.
    [J]. PEERJ, 2013, 1
  • [3] Licensing FAIR Data for Reuse
    Labastida, Ignasi
    Margoni, Thomas
    [J]. DATA INTELLIGENCE, 2020, 2 (1-2) : 199 - 207
  • [4] Licensing FAIR Data for Reuse
    Ignasi Labastida
    Thomas Margoni
    [J]. Data Intelligence, 2020, 2 (Z1) : 199 - 207
  • [5] Informal data citation for data sharing and reuse is more common than formal data citation in biomedical fields
    Park, Hyoungjoo
    You, Sukjin
    Wolfram, Dietmar
    [J]. JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2018, 69 (11) : 1346 - 1354
  • [6] A path to 'FAIR' Food Composition Data
    de la Revilla, Lucia Segovia
    Codd, Thomas
    Grande, Fernanda
    Moltedo, Ana
    Ander, Louise
    Holmes, Bridget
    [J]. ANNALS OF NUTRITION AND METABOLISM, 2023, 79 : 554 - 555
  • [7] Scientists' data discovery and reuse behavior: (Meta)data fitness for use and the FAIR data principles
    Bishop, Bradley Wade
    Hank, Carolyn
    Webster, Joel
    Howard, Rebecca
    [J]. Proceedings of the Association for Information Science and Technology, 2019, 56 (01) : 21 - 31
  • [8] Data Citation and Reuse Practice in Biodiversity-Challenges of Adopting a Standard Citation Model
    Khan, Nushrat
    Thelwall, Mike
    Kousha, Kayvan
    [J]. 17TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI2019), VOL I, 2019, : 1220 - 1225
  • [9] Advantages of Data Reuse Based on Disciplinary Diversity and Citation Count
    Ishita, Emi
    Miyata, Yosuke
    Kurata, Keiko
    [J]. LEVERAGING GENERATIVE INTELLIGENCE IN DIGITAL LIBRARIES: TOWARDS HUMAN-MACHINE COLLABORATION, ICADL 2023, PT II, 2023, 14458 : 162 - 169
  • [10] Sharing FAIR monitoring program data improves discoverability and reuse
    Bayer, Jennifer M.
    Scully, Rebecca A.
    Dlabola, Erin K.
    Courtwright, Jennifer L.
    Hirsch, Christine L.
    Hockman-Wert, David
    Miller, Scott W.
    Roper, Brett B.
    Saunders, W. Carl
    Snyder, Marcia N.
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (10)