ePlant for quantitative and predictive plant science research in the big data era—Lay the foundation for the future model guided crop breeding, engineering and agronomy

被引:0
|
作者
Yi Xiao [1 ]
Tiangen Chang [2 ]
Qingfeng Song [1 ]
Shuyue Wang [2 ]
Danny Tholen [2 ]
Yu Wang [2 ]
Changpeng Xin [2 ]
Guangyong Zheng [2 ]
Honglong Zhao [1 ]
XinGuang Zhu [1 ,2 ]
机构
[1] Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
[2] Plant Systems Biology Research Group, Partner Institute for Computational Biology, Chinese Academy of
关键词
D O I
暂无
中图分类号
Q943.2 [植物基因工程];
学科分类号
摘要
Background: The increase in global population, climate change and stagnancy in crop yield on unit land area basis in recent decades urgently call for a new approach to support contemporary crop improvements. ePlant is a mathematical model of plant growth and development with a high level of mechanistic details to meet this challenge.Results: ePlant integrates modules developed for processes occurring at drastically different temporal(10-8-106seconds) and spatial(10-10-10 meters) scales, incorporating diverse physical, biophysical and biochemical processes including gene regulation, metabolic reaction, substrate transport and diffusion, energy absorption, transfer and conversion, organ morphogenesis, plant environment interaction, etc. Individual modules are developed using a divide-and-conquer approach; modules at different temporal and spatial scales are integrated through transfer variables. We further propose a supervised learning procedure based on information geometry to combine model and data for both knowledge discovery and model extension or advances. We finally discuss the recent formation of a global consortium, which includes experts in plant biology, computer science, statistics, agronomy, phenomics, etc.aiming to expedite the development and application of ePlant or its equivalents by promoting a new model development paradigm where models are developed as a community effort instead of driven mainly by individual labs' effort.Conclusions: e Plant, as a major research tool to support quantitative and predictive plant science research, will play a crucial role in the future model guided crop engineering, breeding and agronomy.
引用
收藏
页码:260 / 271
页数:12
相关论文
empty
未找到相关数据