Detection of Cardiovascular Diseases in ECG Images Using Machine Learning and Deep Learning Methods

被引:28
|
作者
Abubaker M.B. [1 ,2 ]
Babayigit B. [1 ]
机构
[1] Erciyes University, Department of Computer Engineering, Melikgazi
[2] Palestine Technical College, Gaza
来源
关键词
Cardiovascular; deep learning; electrocar diogram (ECG) images; feature extraction; machine learning; transfer learning;
D O I
10.1109/TAI.2022.3159505
中图分类号
学科分类号
摘要
Cardiovascular diseases (heart diseases) are the leading cause of death worldwide. The earlier they can be predicted and classified; the more lives can be saved. Electrocardiogram (ECG) is a common, inexpensive, and noninvasive tool for measuring the electrical activity of the heart and is used to detect cardiovascular disease. In this article, the power of deep learning techniques was used to predict the four major cardiac abnormalities: abnormal heartbeat, myocardial infarction, history of myocardial infarction, and normal person classes using the public ECG images dataset of cardiac patients. First, the transfer learning approach was investigated using the low-scale pretrained deep neural networks SqueezeNet and AlexNet. Second, a new convolutional neural network (CNN) architecture was proposed for cardiac abnormality prediction. Third, the aforementioned pretrained models and our proposed CNN model were used as feature extraction tools for traditional machine learning algorithms, namely support vector machine, K-nearest neighbors, decision tree, random forest, and Naïve Bayes. According to the experimental results, the performance metrics of the proposed CNN model outperform the exiting works; it achieves 98.23% accuracy, 98.22% recall, 98.31% precision, and 98.21% F1 score. Moreover, when the proposed CNN model is used for feature extraction, it achieves the best score of 99.79% using the NB algorithm. © 2020 IEEE.
引用
下载
收藏
页码:373 / 382
页数:9
相关论文
共 50 条
  • [1] Prediction of Cardiovascular Diseases with Retinal Images Using Deep Learning
    Vineetha, Tumu
    Reddy, Danda Rami
    Mahendra, Kandimalla
    Lakshmi, Ballanki Dhana
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [2] Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods
    Rajpoot, Vikram
    Tiwari, Akhilesh
    Jalal, Anand Singh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (23) : 36091 - 36117
  • [3] Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods
    Vikram Rajpoot
    Akhilesh Tiwari
    Anand Singh Jalal
    Multimedia Tools and Applications, 2023, 82 : 36091 - 36117
  • [4] Fake News Detection Using Machine Learning and Deep Learning Methods
    Saeed, Ammar
    Al Solami, Eesa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2079 - 2096
  • [5] Investigation of Applying Machine Learning and Hyperparameter Tuned Deep Learning Approaches for Arrhythmia Detection in ECG Images
    Shanmugavadivel, Kogilavani
    Sathishkumar, V. E.
    Kumar, M. Sandeep
    Maheshwari, V.
    Prabhu, J.
    Allayear, Shaikh Muhammad
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [6] Cardiovascular diseases prediction by machine learning incorporation with deep learning
    Subramani, Sivakannan
    Varshney, Neeraj
    Anand, M. Vijay
    Soudagar, Manzoore Elahi M.
    Al-keridis, Lamya Ahmed
    Upadhyay, Tarun Kumar
    Alshammari, Nawaf
    Saeed, Mohd
    Subramanian, Kumaran
    Anbarasu, Krishnan
    Rohini, Karunakaran
    FRONTIERS IN MEDICINE, 2023, 10
  • [7] Detection of Plant Diseases Using Leaf Images and Machine Learning
    Suljovic, Almira
    Cakic, Stevan
    Popovic, Tomo
    Sandi, Stevan
    2022 21ST INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA (INFOTEH), 2022,
  • [8] Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases
    Abunadi, Ibrahim
    Senan, Ebrahim Mohammed
    ELECTRONICS, 2021, 10 (24)
  • [9] Personalized seizure detection using wearable ECG and machine learning methods
    Jeppesen, J.
    Christensen, J.
    Johansen, P.
    Beniczky, S.
    EPILEPSIA, 2023, 64 : 71 - 71
  • [10] A novel deep learning approach for early detection of cardiovascular diseases from ECG signals
    Aarthy, ST.
    Iqbal, J. L. Mazher
    MEDICAL ENGINEERING & PHYSICS, 2024, 125