Medical Named Entity Recognition Based on Multi-Feature and Co-Attention

被引:0
|
作者
Xinning, L.I.U. [1 ]
机构
[1] Department of Software, Dalian Neusoft University of Information, Liaoning, Dalian,116023, China
关键词
Character recognition - Classification (of information) - Iterative methods - Natural language processing systems - Random processes - Signal encoding - Vectors;
D O I
10.3778/j.issn.1002-8331.2211-0094
中图分类号
学科分类号
摘要
Aiming at the situation that the accuracy of entity recognition cannot be effectively improved due to the lack of fusion of unique feature information of medical texts in current Chinese medical named entity recognition, and the problem that single attention mechanism affects the effectiveness of entity classification, a Chinese medical named entity recognition method based on multi-feature fusion and co-attention mechanism is proposed. Firstly, the vector representation of the original medical text is obtained by using the pre-trained model, and then the feature vectors of word granularity are obtained by using the bidirectional gated recurrent neural network (BiGRU). Secondly, combined with the distinctive radical features of medical named entities, iterative dilation convolution neural network (IDCNN) is used to extract radical-level feature vectors. Finally, the co-attention network is used to integrate medical vector features to generate double correlation features of pair, and then conditional random field (CRF) is used to output entity recognition results. The experimental results show that, compared with other entity recognition models, it can achieve higher accuracy, recall and F1 value on the CCKS dataset. At the same time, although the complexity of the recognition model is increased, the performance does not decrease significantly. © 2024 Editorial Department of Scientia Agricultura Sinica. All rights reserved.
引用
收藏
页码:188 / 198
相关论文
共 50 条
  • [1] Named Entity Recognition of Chinese Electronic Medical Records Based on Multi-Feature Fusion
    Sun, Zhen
    Li, Xinfu
    Computer Engineering and Applications, 2023, 59 (23) : 136 - 144
  • [2] Adaptive Co-Attention Network for Named Entity Recognition in Tweets
    Zhang, Qi
    Fu, Jinlan
    Liu, Xiaoyu
    Huang, Xuanjing
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 5674 - 5681
  • [3] Named entity recognition in aerospace based on multi-feature fusion transformer
    Jing Chu
    Yumeng Liu
    Qi Yue
    Zixuan Zheng
    Xiaokai Han
    Scientific Reports, 14
  • [4] Named entity recognition in aerospace based on multi-feature fusion transformer
    Chu, Jing
    Liu, Yumeng
    Yue, Qi
    Zheng, Zixuan
    Han, Xiaokai
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [5] A multi-feature fusion method based on bilstm-attention-crf for chinese named entity recognition
    Zhang, Zhiyuan
    Sun, Shuihua
    Xu, Shiao
    Xu, Fan
    Liu, Jianhua
    Journal of Network Intelligence, 2021, 6 (03): : 518 - 534
  • [6] Multi-Feature Fusion Transformer for Chinese Named Entity Recognition
    Han, Xiaokai
    Yue, Qi
    Chu, Jing
    Han, Zhan
    Shi, Yifan
    Wang, Chengfeng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 4227 - 4232
  • [7] Named Entity Recognition Model of Power Equipment Based on Multi-feature Fusion
    Wu, Yun
    Ma, Xiangwen
    Yang, Jieming
    Wang, Anping
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 255 - 267
  • [8] Chinese Named Entity Recognition method based on multi-feature fusion and biaffine
    Ke, Xiaohua
    Wu, Xiaobo
    Ou, Zexian
    Li, Binglong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (05) : 6305 - 6318
  • [9] Chinese Medical Named Entity Recognition Combined with Multi-Feature Embedding and Multi-Network Fusion
    Lei, Songze
    Liu, Bo
    Wang, Yufei
    Shan, Aokui
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (08) : 3032 - 3039
  • [10] Multi-Feature Fusion Method for Chinese Pesticide Named Entity Recognition
    Ji, Wenqing
    Fu, Yinghua
    Zhu, Hongmei
    APPLIED SCIENCES-BASEL, 2023, 13 (05):