Segmentation of lung parenchyma based on new U-NET network

被引:0
|
作者
Cheng L. [1 ]
Jiang L. [1 ]
Wang X. [1 ]
Liu Z. [1 ]
Zhao S. [2 ]
机构
[1] School of Physical Science and Technology, Shenyang Normal University, Shenyang
[2] School of Information Engineering, Southwest University of Science and Technology, Fucheng District, Sichuan Province, Mianyang City
关键词
CT images of lung; deep learning; lung parenchymal segmentation; new U-NET;
D O I
10.1504/ijwmc.2022.126380
中图分类号
学科分类号
摘要
As the risk of lung disease increases in people’s daily lives and COVID-19 spreads around the world, lung screening has become critical. Owing to the unique lung tissue, traditional image segmentation methods are difficult to achieve accurate segmentation of lung tissues. In view of the complexity of lung tissue structure, it was found in the experiment that the segmentation accuracy of upper lung and lower lung parenchyma tissue was low. Aiming at this phenomenon, a new network model, new U-NET, was proposed based on the improvement and optimisation of U-NET network model. Experimental data show that the proposed new U-NET network model solves the problem of low segmentation accuracy of the original U-NET network segmentation model at both ends of lung, improves the segmentation accuracy of lung parenchyma on the whole, and verifies that the new U-NET network model is more suitable for parenchyma segmentation. Copyright © 2022 Inderscience Enterprises Ltd.
引用
收藏
页码:173 / 182
页数:9
相关论文
共 50 条
  • [1] Lung Parenchyma Segmentation Based on U-Net Fused With Shape Stream
    Zhu, Lun
    Cai, Yinghui
    Liao, Jiahao
    Wu, Fan
    IEEE ACCESS, 2024, 12 : 29238 - 29251
  • [2] A Segmentation Method of Lung Parenchyma From Chest CT Images Based on Dual U-Net
    Tan, Wenjun
    Liu, Yao
    Liu, Huangying
    Yang, Jinzhu
    Yin, Xiaoxia
    Zhang, Yanchun
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1649 - 1656
  • [3] Modifying U-Net for small dataset - a simplified U-Net version for Liver Parenchyma segmentation
    Prasad, Pravda Jith Ray
    Elle, Ole Jakob
    Lindseth, Frank
    Albregtsen, Fritz
    Kumar, Rahul Prasanna
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [4] Automatic lung field segmentation based on the U-net deep neural network
    Zhang Kunpeng
    Sun Xin
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1670 - 1676
  • [5] Stone segmentation based on improved U-Net network
    Chen, Ning
    Ma, Xinkai
    Luo, Haixia
    Peng, Jun
    Jin, Shangzhu
    Wu, Xiao
    Zhou, Yongsheng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 895 - 908
  • [6] Automatic Segmentation of Lung Noudles using improved U-Net NetWork
    Zhou, Ying
    Chen, Ming
    Zhang, Mengyi
    Wang, Tian
    Yan, Fei
    Xie, Chao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1609 - 1613
  • [7] Lung Field Segmentation Algorithm Based on Improved U-Net
    Yi Sanli
    Wang Tianwei
    Yang Xuelian
    She Furong
    He Jianfeng
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (02)
  • [8] Iris Segmentation Based on Improved U-Net Network Model
    Gao, Chunhui
    Feng, Guorui
    Ren, Yanli
    Liu, Lizhuang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (08) : 982 - 985
  • [9] Segmentation Technology of Nucleus Image Based on U-Net Network
    Fang, Jie
    Zhou, QingBiao
    Wang, Shuxia
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [10] Nanoparticle Segmentation Based on U-Net Convolutional Neural Network
    Zhang Fang
    Wu Yue
    Xiao Zhitao
    Geng Lei
    Wu Jun
    Liu Yanbei
    Wang Wen
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (06)