Novel MoS2/montmorillonite hybrid aerogel encapsulated PEG as composite phase change materials with superior solar-thermal energy harvesting and storage

被引:11
|
作者
Guo, Qijing [1 ,2 ]
Yi, Hao [1 ]
Jia, Feifei [1 ,2 ]
Song, Shaoxian [1 ]
机构
[1] Wuhan Univ Technol, Key Lab Green Utilizat Crit Nonmet Mineral Resourc, Minist Educ, 122 Luoshi Rd, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Resources & Environm Engn, 122 Luoshi Rd, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change materials; Solar-thermal conversion and storage; Solar-thermal-electricity conversion; POLYETHYLENE-GLYCOL; CONDUCTIVITY; ENHANCEMENT; ALGINATE; SYSTEMS; SURFACE; CARBON; PCMS;
D O I
10.1016/j.jcis.2024.04.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase change materials (PCMs) offer significant advantages in energy conversion and storage by facilitating the storage and release of thermal energy during phase transition processes. However, challenges such as leakage during PCM phase transitions and poor light absorption properties have constrained their application in the field of photothermal energy storage. In this study, Montmorillonite (Mt) and molybdenum disulfide (MoS2) has been used to design and synthesize hybrid aerogels (MoS2/Mt) boasting high mechanical strength and excellent photothermal conversion performance. These aerogels are then used to encapsulate polyethylene glycol (PEG) to prepare composite PCMs with outstanding solar-thermal conversion and storage performances. The results show that the synthesized MoS2/Mt-PEG composite PCMs exhibit high enthalpies of melting and solidification of 169.16 J/g and 170.78 J/g, respectively, while the aerogel supporting material has a high compressive modulus of 1.96 MPa. Moreover, the composite material displayed excellent thermal stability and leakage resistance after undergoing 30 melting-cooling cycles. Furthermore, the incorporation of MoS2 imparted outstanding light absorption properties to the MoS2/Mt-PEG composite, resulting in a high light absorption and photothermal conversion-storage efficiency of 93.4 % and 96.47 %, respectively. Synthesized composite PCMs also demonstrate outstanding performance in solar-thermal-electricity conversion, achieving a voltage output of 458 mV under illumination conditions and maintaining a sustainable voltage output even after removing the light source. Thus, the composite PCMs prepared in this work can meet the requirements of high enthalpy, effective leakage prevention, efficient solar-thermal conversion and solar-thermal-electricity conversion performance, thereby presenting potential applications in practical solar energy collection, conversion, and storage.
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
  • [1] Three-dimensional montmorillonite/Ag nanowire aerogel supported stearic acid as composite phase change materials for superior solar-thermal energy harvesting and storage
    Yi, Hao
    Xia, Ling
    Song, Shaoxian
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 217
  • [2] Solid-Liquid Phase Change Composite Materials for Direct Solar-Thermal Energy Harvesting and Storage
    Li, Xiaoxiang
    Liu, Yizhe
    Xu, Yangzhe
    Tao, Peng
    Deng, Tao
    ACCOUNTS OF MATERIALS RESEARCH, 2023, 4 (06): : 484 - 495
  • [3] Phase change materials encapsulated in a novel hybrid carbon skeleton for high-efficiency solar-thermal conversion and energy storage
    Liang, Haoyu
    Wang, Huanping
    Zhang, Pengcheng
    Ding, Dongliang
    Jiao, Yameng
    Zhou, Yijun
    Xue, Qunxiang
    Song, Qiang
    Zhang, Qiuyu
    Chen, Yanhui
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [4] Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity
    Zhang, Yuang
    Wang, Jiasheng
    Qiu, Jinjing
    Jin, Xin
    Umair, Malik Muhammad
    Lu, Rongwen
    Zhang, Shufen
    Tang, Bingtao
    APPLIED ENERGY, 2019, 237 : 83 - 90
  • [5] Flexible MoS2/CNF/PEG phase change film with superior photothermal conversion and thermal energy storage
    Liu, Yubo
    Gao, Keqiao
    Yi, Hao
    Xia, Ling
    Song, Shaoxian
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 282
  • [6] CNTs composite aerogel incorporating phase-change microcapsules for solar-thermal conversion and energy storage
    Han, Zhisong
    Du, Danfeng
    Zhang, Fengmei
    CARBON, 2025, 237
  • [7] Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage
    Yang, Jie
    Qi, Guo-Qiang
    Tang, Li-Sheng
    Bao, Rui-Ying
    Bai, Lu
    Liu, Zheng-Ying
    Yang, Wei
    Xie, Bang-Hu
    Yang, Ming-Bo
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) : 9625 - 9634
  • [8] Solar-thermal conversion and thermal energy storage of different phase change materials
    Eidgah, Emadoddin Erfani Farsi
    Ghafurian, Mohammad Mustafa
    Tavakoli, Ali
    Mortazavi, Ali
    Kianifar, Ali
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (16) : 8051 - 8060
  • [9] Solar-thermal conversion and thermal energy storage of different phase change materials
    Emadoddin Erfani Farsi Eidgah
    Mohammad Mustafa Ghafurian
    Ali Tavakoli
    Ali Mortazavi
    Ali Kianifar
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 8051 - 8060
  • [10] Pyrazolium Phase-Change Materials for Solar-Thermal Energy Storage
    Matuszek, Karolina
    Vijayaraghavan, R.
    Forsyth, Craig M.
    Mahadevan, Surianarayanan
    Kar, Mega
    MacFarlane, Douglas R.
    CHEMSUSCHEM, 2020, 13 (01) : 159 - 164