Study on macromolecular structure of different types of contact metamorphic coals

被引:0
|
作者
Shu Z. [1 ]
Xu X. [1 ]
Wei Y. [1 ]
Wang A. [1 ]
Wang L. [2 ]
Liu Z. [3 ]
Chen G. [1 ]
Cao D. [1 ]
机构
[1] School of Geoscience and Surveying Engineering, China University of Mining and Technology−Beijing, Beijing
[2] Department of Geology and Surveying and Mapping Engineering, Shanxi University of Energy, Jinzhong
[3] Coal Science and Technology Research Institute, Beijing
关键词
coal-based graphite; high pressure; high temperature; high temperature and low pressure; macromolecular structure; magma contact deterioration; natural coke;
D O I
10.13199/j.cnki.cst.2021-1466
中图分类号
学科分类号
摘要
Contact metamorphism occurs when magma intrudes into the coal seam, resulting in changes to the microfraction, grade, chemical composition, physico-chemical structure and process properties of the coal. Different types of contact metamorphic products are formed under different tectonic-thermal conditions. In order to reveal the variability of different types of contact metamorphic coals and their controlling factors from the macromolecular structure scale, a comparative study of natural coke series samples from the Tashan mine in Datong, Shanxi Province and coal-based graphite series samples from the Lutang mine in Hunan Province was carried out using industrial analysis, elemental analysis, reflectance determination, X-ray diffraction (XRD) and Raman spectroscopy (Raman) test methods, and combined with geological background analysis. The results show that the small shallow-formed rocks have a short thermal action time, poor thermal confinement conditions, belong to high temperature and low pressure condition, narrow contact metamorphic zone, and develop natural coke - thermal transformation coal sequence; the series is in the carbonation stage, and the coal macromolecular structure is dominated by chemical changes, with aromatization and ring condensation dominating. It shows carbon enrichment, dehydrogenation, deoxygenation, reduction of defects in the active sites such as side chains and functional groups, growth of aromatic structural units leading to an increase in defects within the aromatic level, and the aromatic lamellae are not ordered. The acidic and moderately acidic deep-formed rock bodies such as strains and bases intruded in a regional extrusive tectonic setting are well heated, thermally confined and under high temperature and pressure conditions, and the contact metamorphic width can exceed 1km, developing graphite-semi-graphite-anthracite metamorphic sequences; the chemical composition of the coal-based graphite series is highly mature and less variable, and the macromolecular structure is dominated by physical changes, mainly occurring as collagenesis and rank physicochemical interactions. The non-oriented aromatic lamellae are spliced and stacked and rotated and oriented by forces, with a continuous reduction of defects and a transition to a three-dimensional ordered crystal structure. © 2023 China Coal Society. All Rights Reserved.
引用
收藏
页码:147 / 157
页数:10
相关论文
共 62 条
  • [1] HUTTON D H W, DEMPSTER T J, BROWN P E, Et al., A new mechanism of granite emplacement: intrusion in active extensional shear zones[J], Nature, 343, 6257, (1990)
  • [2] BUDDINGTON A F., GRANITE emplacement with special reference to North America[J], Geological Society of America Bulletin, 70, 6, (1959)
  • [3] ZHANG Qi, JIN Weijun, LI Chengdong, Et al., Magmatic thermal field” and its Metallogenic Significance[J], Gansu Geology, 23, 1, (2014)
  • [4] YANG Qi, Coal metamorphism in China, (1996)
  • [5] SINGH A K, SHARMA M, SINGH M P., Genesis of natural cokes: some Indian examples[J], International Journal of Coal Geology, 75, 1, (2008)
  • [6] QUEROL X, ALASTUEY A, LOPEZ-SOLER A, Et al., Geological controls on the mineral matter and trace elements of coals from the Fuxin basin, Liaoning Province, northeast China[J], International Journal of Coal Geology, 34, 1-2, (1997)
  • [7] LIU Guijian, Characteristics of magmatic intrusion in the Huanghe Coalfield[J], Coal Geology of China, 6, 2, (1994)
  • [8] QUADERER A, MASTALERZ M, SCHIMMELMANN A, Et al., Dike-induced thermal alteration of the Springfield Coal Member (Pennsylvanian) and adjacent clastic rocks, Illinois Basin, USA[J], International Journal of Coal Geology, 166, (2016)
  • [9] RAHMAN M W, RIMMER S M., Effects of rapid thermal alteration on coal: Geochemical and petrographic signatures in the Springfield (5) Coal, Illinois Basin[J], International Journal of Coal Geology, 131, pp. 214-226, (2014)
  • [10] RIMMER S M, CRELLING J C, YOKSOULIAN L E., An occurrence of coked bitumen, Raton formation, Purgatoire River valley, Colorado, USA[J], International Journal of Coal Geology, 141, (2015)