Atomtransmachine: An atomic feature representation model for machine learning

被引:0
|
作者
Hu, Mengxian [1 ,2 ]
Yuan, Jianmei [1 ,2 ]
Sun, Tao [1 ,2 ]
Huang, Meng [1 ,2 ]
Liang, Qingyun [1 ,2 ]
机构
[1] Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Hunan,411105, China
[2] Hunan National Center for Applied Mathematics, Hunan,411105, China
关键词
531 Metallurgy and Metallography - 723.4 Artificial Intelligence - 723.4.2 Machine Learning - 931.3 Atomic and Molecular Physics - 933.1.1 Crystal Lattice;
D O I
暂无
中图分类号
学科分类号
摘要
23
引用
收藏
相关论文
共 50 条
  • [1] Atomtransmachine: An atomic feature representation model for machine learning
    Hu, Mengxian
    Yuan, Jianmei
    Sun, Tao
    Huang, Meng
    Liang, Qingyun
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 200
  • [2] GenELM: Generative Extreme Learning Machine feature representation
    Zhou, Shichao
    Deng, Chenwei
    Wang, Wenzheng
    Huang, Guang-Bin
    Zhao, Baojun
    [J]. NEUROCOMPUTING, 2019, 362 : 41 - 50
  • [3] Novel Feature Representation and Machine Learning Methods in Computational Proteomics
    Chen, Lei
    [J]. CURRENT PROTEOMICS, 2021, 18 (05) : 606 - 607
  • [4] A Machine Learning Model to Classify the Feature Model Maintainability
    Silva, Publio
    Bezerra, Carla I. M.
    Machado, Ivan
    [J]. SPLC '21: PROCEEDINGS OF THE 25TH ACM INTERNATIONAL SYSTEMS AND SOFTWARE PRODUCT LINE CONFERENCE, VOL A, 2021,
  • [5] A Unified Model Representation of Machine Learning Knowledge
    Enriquez, J. G.
    Martinez-Rojas, A.
    Lizcano, D.
    Jimenez-Ramirez, A.
    [J]. JOURNAL OF WEB ENGINEERING, 2020, 19 (02): : 319 - 340
  • [6] Learning to Make Chemical Predictions: The Interplay of Feature Representation, Data, and Machine Learning Methods
    Haghighatlari, Mojtaba
    Li, Jie
    Heidar-Zadeh, Farnaz
    Liu, Yuchen
    Guan, Xingyi
    Head-Gordon, Teresa
    [J]. CHEM, 2020, 6 (07): : 1527 - 1542
  • [7] Towards a Unified Model Representation of Machine Learning Knowledge
    Martinez-Rojas, Antonio
    Jimenez-Ramirez, Andres
    Enriquez, Jose G.
    [J]. WEBIST: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 2019, : 470 - 476
  • [8] Building a pronominalization model by feature selection and machine learning
    Roh, JE
    Lee, JH
    [J]. NATURAL LANGUAGE PROCESSING - IJCNLP 2004, 2005, 3248 : 566 - 575
  • [9] Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective
    Ding, Yuheng
    Qiang, Bo
    Chen, Qixuan
    Liu, Yiqiao
    Zhang, Liangren
    Liu, Zhenming
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (08) : 2955 - 2970
  • [10] Multi-Grained Cascade AdaBoost Extreme Learning Machine for Feature Representation
    Ge, Hongwei
    Sun, Weiting
    Zhao, Mingde
    Zhang, Kai
    Sun, Liang
    Yu, Chao
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,