BayesDAG: Gradient-Based Posterior Inference for Causal Discovery

被引:0
|
作者
KTH Royal Institute of Technology, Stockholm, Sweden [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
机构
来源
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Matrix algebra - Stochastic systems - Uncertainty analysis
引用
收藏
相关论文
共 50 条
  • [1] Trust Your del: Gradient-based Intervention Targeting for Causal Discovery
    Olko, Mateusz
    Zajac, Michal
    Nowak, Aleksandra
    Scherrer, Nino
    Annadani, Yashas
    Bauer, Stefan
    Kucinski, Lukasz
    Milos, Piotr
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] Gradient-Based Local Causal Structure Learning
    Liang, Jiaxuan
    Wang, Jun
    Yu, Guoxian
    Domeniconi, Carlotta
    Zhang, Xiangliang
    Guo, Maozu
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (01) : 486 - 495
  • [3] Gradient-Based Inference for Networks with Output Constraints
    Lee, Jay Yoon
    Mehta, Sanket Vaibhav
    Wick, Michael
    Tristan, Jean-Baptiste
    Carbonell, Jaime
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4147 - 4154
  • [4] Gradient-based MCMC samplers for dynamic causal modelling
    Sengupta, Biswa
    Friston, Karl J.
    Penny, Will D.
    [J]. NEUROIMAGE, 2016, 125 : 1107 - 1118
  • [5] GBMIA: Gradient-based Membership Inference Attack in Federated Learning
    Wang, Xiaodong
    Wang, Naiyu
    Wu, Longfei
    Guan, Zhitao
    Du, Xiaojiang
    Guizani, Mohsen
    [J]. ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5066 - 5071
  • [6] Methods and tools for causal discovery and causal inference
    Nogueira, Ana Rita
    Pugnana, Andrea
    Ruggieri, Salvatore
    Pedreschi, Dino
    Gama, Joao
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 12 (02)
  • [7] Toward a connectivity gradient-based framework for reproducible biomarker discovery
    Hong, Seok-Jun
    Xu, Ting
    Nikolaidis, Aki
    Smallwood, Jonathan
    Margulies, Daniel S.
    Bernhardt, Boris
    Vogelstein, Joshua
    Milham, Michael P.
    [J]. NEUROIMAGE, 2020, 223
  • [8] The Higgs discovery as a diagnostic causal inference
    Wuethrich, Adrian
    [J]. SYNTHESE, 2017, 194 (02) : 461 - 476
  • [9] Causal Discovery and Inference of Project Disputes
    Love, Peter E. D.
    Davis, Peter Rex
    Cheung, Sai On
    Irani, Zahir
    [J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2011, 58 (03) : 400 - 411
  • [10] The Higgs discovery as a diagnostic causal inference
    Adrian Wüthrich
    [J]. Synthese, 2017, 194 : 461 - 476