Strength in numbers: Improving generalization with ensembles in machine learning-based profiled side-channel analysis

被引:0
|
作者
Perin G. [1 ,2 ]
Chmielewski Ł. [1 ]
Picek S. [2 ]
机构
[1] Riscure BV, Netherlands
[2] Delft University of Technology, Netherlands
基金
欧盟地平线“2020”;
关键词
Ensemble Learning; Model Generalization; Neural Networks; Side-channel Analysis;
D O I
10.13154/tches.v2020.i4.337-364
中图分类号
学科分类号
摘要
The adoption of deep neural networks for profiled side-channel attacks provides powerful options for leakage detection and key retrieval of secure products. When training a neural network for side-channel analysis, it is expected that the trained model can implement an approximation function that can detect leaking side-channel samples and, at the same time, be insensible to noisy (or non-leaking) samples. This outlines a generalization situation where the model can identify the main representations learned from the training set in a separate test set. This paper discusses how output class probabilities represent a strong metric when conducting the side-channel analysis. Further, we observe that these output probabilities are sensitive to small changes, like selecting specific test traces or weight initialization for a neural network. Next, we discuss the hyperparameter tuning, where one commonly uses only a single out of dozens of trained models, where each of those models will result in different output probabilities. We show how ensembles of machine learning models based on averaged class probabilities can improve gen-eralization. Our results emphasize that ensembles increase a profiled side-channel attack’s performance and reduce the variance of results stemming from different hyperparameters, regardless of the selected dataset or leakage model. © 2020, Ruhr-University of Bochum. All rights reserved.
引用
收藏
页码:337 / 364
页数:27
相关论文
共 50 条
  • [1] Challenges in Deep Learning-Based Profiled Side-Channel Analysis
    Picek, Stjepan
    SECURITY, PRIVACY, AND APPLIED CRYPTOGRAPHY ENGINEERING, SPACE 2019, 2019, 11947 : 9 - 12
  • [2] Non-profiled deep learning-based side-channel attacks with sensitivity analysis
    Timon, Benjamin
    IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019, 2019 (02): : 107 - 131
  • [3] Learning-based Side-Channel Analysis on PIPO
    Woo, Ji-Eun
    Han, Jaeseung
    Kim, Yeon-Jae
    Mun, Hye-Won
    Lim, Seonghyuck
    Lee, Tae-Ho
    An, Seong-Hyun
    Kim, Soo-Jin
    Han, Dong-Guk
    INFORMATION SECURITY AND CRYPTOLOGY, ICISC 2021, 2022, 13218 : 308 - 321
  • [4] Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders
    Kwon, Donggeun
    Kim, Heeseok
    Hong, Seokhie
    IEEE ACCESS, 2021, 9 : 57692 - 57703
  • [5] Non-Profiled Deep Learning-Based Side-Channel Analysis With Only One Network Training
    Imafuku, Kentaro
    Kawamura, Shinichi
    Nozaki, Hanae
    Sakamoto, Junichi
    Osuka, Saki
    IEEE ACCESS, 2023, 11 : 83221 - 83231
  • [6] On the Evaluation of Deep Learning-Based Side-Channel Analysis
    Wu, Lichao
    Perin, Guilherme
    Picek, Stjepan
    CONSTRUCTIVE SIDE-CHANNEL ANALYSIS AND SECURE DESIGN, COSADE 2022, 2022, 13211 : 49 - 71
  • [7] Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks
    Kwon, Donggeun
    Hong, Seokhie
    Kim, Heeseok
    IEEE ACCESS, 2022, 10 : 5957 - 5967
  • [8] SoK: Deep Learning-based Physical Side-channel Analysis
    Picek, Stjepan
    Perin, Guilherme
    Mariot, Luca
    Wu, Lichao
    Batina, Lejla
    ACM COMPUTING SURVEYS, 2023, 55 (11)
  • [9] Label Correlation in Deep Learning-Based Side-Channel Analysis
    Wu, Lichao
    Weissbart, Leo
    Krcek, Marina
    Li, Huimin
    Perin, Guilherme
    Batina, Lejla
    Picek, Stjepan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 3849 - 3861
  • [10] Improving Deep Learning Networks for Profiled Side-channel Analysis Using Performance Improvement Techniques
    Robissout, Damien
    Bossuet, Lilian
    Habrard, Amaury
    Grosso, Vincent
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2021, 17 (03)