Smart water grid technology based on deep learning: a review

被引:0
|
作者
Wu, Huan [1 ,2 ]
Peng, Lin [3 ]
Jiang, Feng [4 ]
Cheng, Shuiping [5 ]
Chen, Jie [2 ,5 ]
Yan, Linda [6 ]
机构
[1] College of Environmental Science and Engineering, Tongji University, Shanghai, China
[2] T.Y. Lin International Engineering Consulting (China) Co., Ltd., Chongqing, China
[3] School of Big Data and Software Engineering, Chongqing University, Chongqing, China
[4] School of Finance and Management, Chongqing Business Vocational College, Chongqing, China
[5] College of Environment and Ecology, Chongqing University, Chongqing, China
[6] School of Engineering, University of Portsmouth, Hampshire, Portsmouth,PO1 2UP, United Kingdom
关键词
Deep learning - Natural language processing systems - Pipelines - Water pollution;
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:338 / 349
相关论文
共 50 条
  • [1] Deep Learning in Smart Grid Technology: A Review of Recent Advancements and Future Prospects
    Massaoudi, Mohamed
    Abu-Rub, Haitham
    Refaat, Shady S.
    Chihi, Ines
    Oueslati, Fakhreddine S.
    IEEE ACCESS, 2021, 9 : 54558 - 54578
  • [2] Deep Learning Based Consumer Classification for Smart Grid
    Tornai, Kalman
    Olah, Andras
    Drenyovszki, Rajmund
    Kovacs, Lorant
    Pinter, Istvan
    Levendovszky, Janos
    SMART GRID INSPIRED FUTURE TECHNOLOGIES, 2017, 203 : 132 - 141
  • [3] Machine Learning and Deep Learning in smart manufacturing: The Smart Grid paradigm
    Kotsiopoulos, Thanasis
    Sarigiannidis, Panagiotis
    Ioannidis, Dimosthenis
    Tzovaras, Dimitrios
    COMPUTER SCIENCE REVIEW, 2021, 40
  • [4] A Review of Smart Technology (Smart Grid) and Its Features
    Paul, Shuva
    Rabbani, Md Sajed
    Kundu, Ripon Kumar
    Zaman, Sikdar Mohammad Raihan
    PROCEEDINGS OF 2014 1ST INTERNATIONAL CONFERENCE ON NON CONVENTIONAL ENERGY (ICONCE 2014), 2014, : 200 - 203
  • [5] Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques
    Biswal, Biswajit
    Deb, Subhasish
    Datta, Subir
    Ustun, Taha Selim
    Cali, Umit
    Energy Reports, 2024, 12 : 3654 - 3670
  • [6] Research progress in water quality prediction based on deep learning technology: a review
    Li W.
    Zhao Y.
    Zhu Y.
    Dong Z.
    Wang F.
    Huang F.
    Environmental Science and Pollution Research, 2024, 31 (18) : 26415 - 26431
  • [7] Water Wave Optimization with Deep Learning Driven Smart Grid Stability Prediction
    Hilal, Anwer Mustafa
    Hashim, Aisha Hassan Abdalla
    Mohamed, Heba G.
    Alamgeer, Mohammad
    Nour, Mohamed K.
    Abdelrahman, Anas
    Motwakel, Abdelwahed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 6019 - 6035
  • [8] The distributed economic dispatch of smart grid based on deep reinforcement learning
    Fu, Yang
    Guo, Xiaoyan
    Mi, Yang
    Yuan, Minghan
    Ge, Xiaolin
    Su, Xiangjing
    Li, Zhenkun
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2021, 15 (18) : 2645 - 2658
  • [9] Safe Operation Management of Urban Smart Grid Based on Deep Learning
    You, Huimin
    Mobile Information Systems, 2022, 2022
  • [10] Safe Operation Management of Urban Smart Grid Based on Deep Learning
    You, Huimin
    MOBILE INFORMATION SYSTEMS, 2022, 2022