The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes: The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes

被引:0
|
作者
Yates C.A. [1 ]
George A. [1 ]
Jordana A. [2 ]
Smith C.A. [1 ]
Duncan A.B. [3 ]
Zygalakis K.C. [4 ]
机构
[1] Department of Mathematical Sciences, University of Bath, Claverton Down, Bath
[2] Centre de Mathématiques et de Leurs Applications, Cnrs, Ens Paris-Saclay, Université Paris-Saclay, Cachan cedex
[3] Department of Mathematics, Imperial College London, London
[4] School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Peter Guthrie Tait Road, Edinburgh
来源
Journal of the Royal Society Interface | 2020年 / 17卷 / 171期
基金
英国工程与自然科学研究理事会;
关键词
hybrid modelling; hybrid modelling framework; multiscale modelling; partial differential equation; stochastic reaction-diffusion;
D O I
10.1098/rsif.2020.0563
中图分类号
学科分类号
摘要
The simulation of stochastic reaction-diffusion systems using fine-grained representations can become computationally prohibitive when particle numbers become large. If particle numbers are sufficiently high then it may be possible to ignore stochastic fluctuations and use a more efficient coarse-grained simulation approach. Nevertheless, for multiscale systems which exhibit significant spatial variation in concentration, a coarse-grained approach may not be appropriate throughout the simulation domain. Such scenarios suggest a hybrid paradigm in which a computationally cheap, coarse-grained model is coupled to a more expensive, but more detailed fine-grained model, enabling the accurate simulation of the fine-scale dynamics at a reasonable computational cost. In this paper, in order to couple two representations of reaction-diffusion at distinct spatial scales, we allow them to overlap in a 'blending region'. Both modelling paradigms provide a valid representation of the particle density in this region. From one end of the blending region to the other, control of the implementation of diffusion is passed from one modelling paradigm to another through the use of complementary 'blending functions' which scale up or down the contribution of each model to the overall diffusion. We establish the reliability of our novel hybrid paradigm by demonstrating its simulation on four exemplar reaction-diffusion scenarios. © 2020 The Authors.
引用
下载
收藏
相关论文
共 50 条
  • [1] The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes
    Yates, Christian A.
    George, Adam
    Jordana, Armand
    Smith, Cameron A.
    Duncan, Andrew B.
    Zygalakis, Konstantinos C.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2020, 17 (171)
  • [2] Stochastic simulation of coupled reaction-diffusion processes
    Stundzia, AB
    Lumsden, CJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (01) : 196 - 207
  • [3] A hybrid approach to reaction-diffusion processes simulation
    Bandman, O
    PARALLEL COMPUTING TECHNOLOGIES, 2001, 2127 : 1 - 16
  • [4] SIMULATION OF STOCHASTIC REACTION-DIFFUSION PROCESSES ON UNSTRUCTURED MESHES
    Engblom, Stefan
    Ferm, Lars
    Hellander, Andreas
    Lotstedt, Per
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 1774 - 1797
  • [5] An adaptive algorithm for simulation of stochastic reaction-diffusion processes
    Ferm, Lars
    Hellander, Andreas
    Lotstedt, Per
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (02) : 343 - 360
  • [6] Stochastic Analysis of Reaction-Diffusion Processes
    Hu, Jifeng
    Kang, Hye-Won
    Othmer, Hans G.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (04) : 854 - 894
  • [7] Stochastic modelling of reaction-diffusion processes
    Hopkins, David
    Erban, Radek
    MATHEMATICAL GAZETTE, 2022, 106 (565): : 186 - 187
  • [8] A hybrid continuous-discrete method for stochastic reaction-diffusion processes
    Lo, Wing-Cheong
    Zheng, Likun
    Nie, Qing
    ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (09):
  • [9] Stochastic reaction-diffusion simulation with MesoRD
    Hattne, J
    Fange, D
    Elf, J
    BIOINFORMATICS, 2005, 21 (12) : 2923 - 2924
  • [10] Efficient stochastic simulation of reaction-diffusion processes via direct compilation
    Lis, Mieszko
    Artyomov, Maxim N.
    Devadas, Srinivas
    Chakraborty, Arup K.
    BIOINFORMATICS, 2009, 25 (17) : 2289 - 2291