An exactly solvable model for two-dimensional non-Hermitian quasicrystals

被引:0
|
作者
Kou, Su-Peng [1 ]
机构
[1] Department of Physics, Beijing Normal University, Beijing,100875, China
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
5
引用
收藏
相关论文
共 50 条
  • [1] An exactly solvable model for two-dimensional non-Hermitian quasicrystals
    Kou, Su-Peng
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (02)
  • [2] An exactly solvable model for two-dimensional non-Hermitian quasicrystals
    Su-Peng Kou
    [J]. Science China(Physics,Mechanics & Astronomy), 2022, Mechanics & Astronomy)2022 (02) : 128 - 128
  • [3] An exactly solvable model for two-dimensional non-Hermitian quasicrystals
    Su-Peng Kou
    [J]. Science China Physics, Mechanics & Astronomy, 2022, 65
  • [4] On an Exactly-Solvable One-Dimensional Non-Hermitian Lattice
    Fernández, Francisco Marcelo
    [J]. SSRN, 2023,
  • [5] Exact mobility edges and topological phase transition in two-dimensional non-Hermitian quasicrystals
    Zhi-Hao Xu
    Xu Xia
    Shu Chen
    [J]. Science China(Physics,Mechanics & Astronomy), 2022, 65 (02) : 86 - 94
  • [6] Exact mobility edges and topological phase transition in two-dimensional non-Hermitian quasicrystals
    Xu, Zhi-Hao
    Xia, Xu
    Chen, Shu
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (02)
  • [7] Exact mobility edges and topological phase transition in two-dimensional non-Hermitian quasicrystals
    Zhi-Hao Xu
    Xu Xia
    Shu Chen
    [J]. Science China Physics, Mechanics & Astronomy, 2022, 65
  • [8] Exact mobility edges and topological phase transition in two-dimensional non-Hermitian quasicrystals
    ZhiHao Xu
    Xu Xia
    Shu Chen
    [J]. Science China(Physics,Mechanics & Astronomy), 2022, (02) : 86 - 94
  • [9] A new non-Hermitian E2-quasi-exactly solvable model
    Fring, Andreas
    [J]. PHYSICS LETTERS A, 2015, 379 (10-11) : 873 - 876
  • [10] Generation of exactly solvable non-Hermitian potentials with real energies
    Sinha, A
    Roy, P
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (01) : 129 - 138