Transcendental equation solver: A novel neural network for solving transcendental equation

被引:0
|
作者
Liu, Jingyi [1 ,2 ,4 ]
Wang, Guojun [1 ,2 ,4 ]
Li, Weijun [1 ,2 ,3 ,4 ]
Sun, Linjun [1 ,2 ,4 ]
Zhang, Liping [1 ,2 ,4 ]
Yu, Lina [1 ,2 ,4 ]
机构
[1] Institute of Semiconductors, Chinese Academy of Sciences, Beijing,100083, China
[2] Center of Materials Science and Optoelectronics Engineering & School of Microelectronics, University of Chinese Academy of Sciences, Beijing,100049, China
[3] Shenzhen DAPU Microelectronics Co., Ltd, Shenzhen,518100, China
[4] Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology, Beijing,100083, China
关键词
Discriminators;
D O I
暂无
中图分类号
TN7 [基本电子电路];
学科分类号
080902 ;
摘要
In this paper, we propose a novel method called transcendental equation solver (TES) for solving transcendental equations. The TES comprises a generator defined by a neural network and a discriminator defined by the mathematical expression of the transcendental equation. First, a large amount of random noise is input into the TES generator to generate the solutions of the equation; subsequently, the solution is input into the discriminator and the discriminator calculates the error between the discriminator output and the true value. Moreover, this error can update the parameters in the generator with the backpropagation algorithm. The experimental results proved that the TES exhibits an improvement in accuracy, convergence speed, and stability compared to the other methods for solving transcendental equations. © 2022 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [1] Transcendental equation solver: A novel neural network for solving transcendental equation
    Liu, Jingyi
    Wang, Guojun
    Li, Weijun
    Sun, Linjun
    Zhang, Liping
    Yu, Lina
    APPLIED SOFT COMPUTING, 2022, 117
  • [2] Solving transcendental equation using artificial neural network
    Jeswal, S. K.
    Chakraverty, S.
    APPLIED SOFT COMPUTING, 2018, 73 : 562 - 571
  • [3] ACCURATE KEPLER EQUATION SOLVER WITHOUT TRANSCENDENTAL FUNCTION EVALUATIONS
    Pimienta-Penalver, Adonis
    Crassidis, John L.
    JER-NAN JUANG ASTRODYNAMICS SYMPOSIUM, 2013, 147 : 233 - 247
  • [4] ROOTS OF A TRANSCENDENTAL EQUATION
    TUEL, WG
    ZIEGLER, M
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (06): : 722 - &
  • [5] ON THE ROOTS OF A TRANSCENDENTAL EQUATION
    SHERMAN, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (04) : 460 - 460
  • [6] ON THE NUMBER OF ROOTS OF A TRANSCENDENTAL EQUATION
    RENARDY, M
    GROSJEAN, CC
    JORDAN, WB
    SIAM REVIEW, 1990, 32 (04) : 682 - 683
  • [7] The solution of a certain transcendental equation
    Watson, GN
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1910, 8 : 162 - 177
  • [8] SOLVING OF TRANSCENDENTAL EQUATION RELATING RELATIVE VISCOSITY TO REDUCED CONCENTRATION VARIABLE
    MEFFROYBIGET, AM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1975, 280 (05): : 263 - 265
  • [9] A method solving Kepler's equation without transcendental function evaluations
    Fukushima, T
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1997, 66 (03): : 309 - 319
  • [10] SUMS OF POWERS OF ROOTS OF A TRANSCENDENTAL EQUATION
    JORDAN, WB
    SIAM REVIEW, 1986, 28 (03) : 400 - 402