A crowd video retrieval framework using generic descriptors

被引:0
|
作者
Wong, Pei Voon [1 ]
Mustapha, Norwati [2 ]
Affendey, Lilly Suriani [2 ]
Khalid, Fatimah [2 ]
机构
[1] Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
[2] Faculty of Computer Science and Information Technology, University Putra Malaysia, UPM, Serdang, Selangor, Malaysia
关键词
Motion analysis - Time and motion study - Feature extraction - Security systems;
D O I
10.3966/199115992020023101003
中图分类号
学科分类号
摘要
In the era of data mining and analytics, retrieval of crowd video with desired motion pattern segmentation plays a significant role in surveillance video management. The retrieval of crowd video with desired motion pattern segmentation poses challenges in finding generic descriptors to describe crowd patterns and similarity matching. This paper presents a novel crowd video retrieval framework using generic descriptors to overcome the above challenges. The anticipated structure comprises of four core components, namely motion feature extraction, group detection, learning generic descriptors, and crowd video retrieval. Results obtained indicate that the proposed framework can improve performance of crowd video retrieval compared with the existing crowd motions on CUHK Crowd Dataset. © 2020 Computer Society of the Republic of China. All rights reserved.
引用
收藏
页码:34 / 45
相关论文
共 50 条
  • [1] Image retrieval using modified Generic Fourier Descriptors
    Sajjanhar, A
    Lu, GJ
    Zhang, DS
    [J]. COMPUTERS AND THEIR APPLICATIONS, 2004, : 32 - 35
  • [2] Crowd Behavior Classification based on Generic Descriptors
    Wong, Pei Voon
    Mustapha, Norwati
    Affendey, Lilly Suriani
    Khalid, Fatimah
    Chen, Yen-Lin
    [J]. 2019 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2019,
  • [3] Generic framework for content-based stereo image/video retrieval
    Feng, Y.
    Ren, J.
    Jiang, J.
    [J]. ELECTRONICS LETTERS, 2011, 47 (02) : 97 - +
  • [4] A novel framework for crowd counting using video and audio
    Zou, Yi
    Min, Weidong
    Zhao, Haoyu
    Han, Qing
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2023, 109
  • [5] A Straightforward Framework for Video Retrieval Using CLIP
    Portillo-Quintero, Jesus Andres
    Ortiz-Bayliss, Jose Carlos
    Terashima-Marin, Hugo
    [J]. PATTERN RECOGNITION (MCPR 2021), 2021, 12725 : 3 - 12
  • [6] Compressed domain video retrieval using object and global motion descriptors
    Babu, R. Venkatesh
    Ramakrishnan, K. R.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2007, 32 (01) : 93 - 113
  • [7] Design of Video Retrieval System Using MPEG-7 Descriptors
    Liang, Bin
    Xiao, Wenbing
    Liu, Xiang
    [J]. 2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 2578 - 2582
  • [8] Compressed domain video retrieval using object and global motion descriptors
    R. Venkatesh Babu
    K. R. Ramakrishnan
    [J]. Multimedia Tools and Applications, 2007, 32 : 93 - 113
  • [9] Event Video Retrieval using Global and Local Descriptors in Visual Domain
    Carlos, Jennifer Roldan
    Lux, Mathias
    Giro-i-Nieto, Xavier
    Munoz, Pia
    Anagnostopoulos, Nektarios
    [J]. 2015 13TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2015,
  • [10] Video retrieval in laparoscopic video recordings with dynamic content descriptors
    Klaus Schoeffmann
    Heinrich Husslein
    Sabrina Kletz
    Stefan Petscharnig
    Bernd Muenzer
    Christian Beecks
    [J]. Multimedia Tools and Applications, 2018, 77 : 16813 - 16832