Feasibility Study of Automatic Learning Defect Segmentation System for Patterned Textiles

被引:0
|
作者
Honda, Motoshi [1 ]
Hirosawa, Satoru [1 ]
Kitaguchi, Saori [2 ]
Sato, Tetsuya [2 ]
机构
[1] Kyoto Municipal Institute of Industrial Technology and Culture, 91 Chudoji Awata-cho, Shimogyo-ku, Kyoto,600-8815, Japan
[2] Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto,606-8585, Japan
来源
Journal of Textile Engineering | 2022年 / 68卷 / 05期
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Automatic-learning - Craft industry - Defect segmentation - Neural-networks - Patterned textile - Segmentation system - Traditional craft industry - Traditional crafts - Training time - Unsupervised machine learning
引用
收藏
页码:87 / 97
相关论文
共 50 条
  • [1] Proposal of unsupervised defect segmentation method for patterned textiles based on machine learning
    Honda M.
    Hirosawa S.
    Mimura M.
    Hayami T.
    Kitaguchi S.
    Satou T.
    Journal of Textile Engineering, 2020, 66 (03) : 47 - 54
  • [2] METRIC LEARNING BASED AUTOMATIC SEGMENTATION OF PATTERNED SPECIES
    Shukla, Ankita
    Anand, Saket
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3982 - 3986
  • [3] AUTOMATIC DEFECT SEGMENTATION BY UNSUPERVISED ANOMALY LEARNING
    Ofir, Nati
    Yacobi, Ran
    Granoviter, Omer
    Levant, Boris
    Shtalrid, Ore
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 306 - 310
  • [4] Radiomics-Based Quality Control System for Automatic Cardiac Segmentation: A Feasibility Study
    Liu, Qiming
    Lu, Qifan
    Chai, Yezi
    Tao, Zhengyu
    Wu, Qizhen
    Jiang, Meng
    Pu, Jun
    BIOENGINEERING-BASEL, 2023, 10 (07):
  • [5] LEARNING A LOSS FUNCTION FOR SEGMENTATION: A FEASIBILITY STUDY
    Moltz, J. H.
    Haensch, A.
    Lassen-Schmidt, B.
    Haas, B.
    Genghi, A.
    Schreier, J.
    Morgas, T.
    Klein, J.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 957 - 960
  • [6] A Study on the Feasibility of Active Contours on Automatic CT Bone Segmentation
    Truc, Phan T. H.
    Kim, Tae-Seong
    Lee, Sungyoung
    Lee, Young-Koo
    JOURNAL OF DIGITAL IMAGING, 2010, 23 (06) : 793 - 805
  • [7] A Study on the Feasibility of Active Contours on Automatic CT Bone Segmentation
    Phan T. H. Truc
    Tae-Seong Kim
    Sungyoung Lee
    Young-Koo Lee
    Journal of Digital Imaging, 2010, 23 : 793 - 805
  • [8] Dual attention deep learning network for automatic steel surface defect segmentation
    Pan, Y.
    Zhang, L.
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2022, 37 (11) : 1468 - 1487
  • [9] Automatic Defect Segmentation in X-Ray Images Based on Deep Learning
    Du, Wangzhe
    Shen, Hongyao
    Fu, Jianzhong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (12) : 12912 - 12920
  • [10] A generic deep-learning based defect segmentation model for electron micrographs for automatic defect inspection
    Jacob, Martin
    Hallal, Ali
    Baderot, Julien
    Barra, Vincent
    Guillin, Arnaud
    Martinez, Sergio
    Foucher, Johann
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII, 2023, 12496