Quasi-Periodic Solutions of a Damped Nonlinear Quasi-Periodic Mathieu Equation by the Incremental Harmonic Balance Method With Two Time Scales

被引:0
|
作者
Huang, J.L. [1 ]
Zhang, B.X. [1 ]
Zhu, W.D. [2 ]
机构
[1] Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou,510275, China
[2] Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore,MD,21250, United States
来源
关键词
Natural frequencies;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Quasi-Periodic Solutions of a Damped Nonlinear Quasi-Periodic Mathieu Equation by the Incremental Harmonic Balance Method With Two Time Scales
    Huang, J. L.
    Zhang, B. X.
    Zhu, W. D.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2022, 89 (09):
  • [2] Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation
    K. Guennoun
    M. Houssni
    M. Belhaq
    Nonlinear Dynamics, 2002, 27 : 211 - 236
  • [3] Quasi-periodic solutions and stability for a weakly damped nonlinear quasi-periodic Mathieu equation
    Guennoun, K
    Houssni, M
    Belhaq, M
    NONLINEAR DYNAMICS, 2002, 27 (03) : 211 - 236
  • [4] An incremental harmonic balance method with two time-scales for quasi-periodic responses of a Van der Pol-Mathieu equation
    Huang, J. L.
    Wang, T.
    Zhu, W. D.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2021, 135
  • [5] AN INCREMENTAL HARMONIC BALANCE METHOD WITH TWO TIME SCALES FOR QUASI-PERIODIC MOTION OF NONLINEAR SYSTEMS WITH CUBIC NONLINEARITY
    Huang, Jianliang
    Zhu, Weidong
    Chen, Shuhui
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 8, 2020,
  • [6] Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential
    Zhang, Min
    Wang, Yi
    Li, Yan
    AIMS MATHEMATICS, 2021, 6 (01): : 643 - 674
  • [7] Asymptotic solutions for a damped non-linear quasi-periodic Mathieu equation
    Belhaq, M
    Guennoun, K
    Houssni, M
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2002, 37 (03) : 445 - 460
  • [8] A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing term
    Wang, Yi
    Si, Jianguo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (01): : 189 - 190
  • [9] A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing term
    Yi Wang
    Jianguo Si
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 189 - 190
  • [10] Bursters and quasi-periodic solutions of a self-excited quasi-periodic Mathieu oscillator
    Lakrad, F
    Azouani, A
    Abouhazim, N
    Belhaq, M
    CHAOS SOLITONS & FRACTALS, 2005, 24 (03) : 813 - 824