A review on leukemia detection and classification using Artificial Intelligence-based techniques

被引:0
|
作者
Aby A.E. [1 ]
Salaji S. [2 ]
Anilkumar K.K. [1 ]
Rajan T. [3 ]
机构
[1] Department of Electronics & Communication, Cochin University College of Engineering Kuttanad, Cochin University of Science And Technology, Pulincunnu P.O., Kerala State, Alappuzha District
[2] Department of Mechanical Engineering, Cochin University College of Engineering Kuttanad, Cochin University of Science And Technology, Pulincunnu P.O., Kerala State, Alappuzha District
[3] Senior Resident, Department of Pathology, Believers Church Medical College Hospital, St. Thomas Nagar, P.O. Box-31, Kuttapuzha, Thiruvalla, Kerala State, Pathanamthitta District
来源
关键词
Deep learning; Leukemia; Machine learning; Review;
D O I
10.1016/j.compeleceng.2024.109446
中图分类号
学科分类号
摘要
Leukemia is a type of cancer affecting blood-forming tissues, where timely diagnosis is crucial for early intervention and better treatment outcomes. Traditional detection methods are time-intensive, laborious, and depend on skilled manual examination of bone marrow or peripheral blood smears. However, research in automated leukemia detection has significantly advanced with the development of sophisticated image processing techniques using Machine Learning (ML) and Deep Learning (DL) approaches. This literature review analyzes recent studies on automated leukemia detection, utilizing various specimens such as gene expression data, images of bone marrow, and peripheral blood smears. It also provides a list of public repositories offering access to these datasets. The reviewed articles are sourced from reputable databases like ScienceDirect, Springer, IEEE Xplore, Wiley, and others, covering the period from 2018 to 2023. The review examines the specificity of the field of study, techniques, classifiers, optimizers, platforms, and datasets used in the referenced articles. Findings indicate the efficacy of both ML and DL techniques, with DL often surpassing traditional ML methods. Diverse datasets, innovative feature selection, and optimization techniques have further enhanced leukemia detection and classification methodologies, highlighting ongoing advancements in the field. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Artificial Intelligence-Based Image Classification Techniques for Hydrologic Applications
    Thakur, Ritica
    Manekar, V. L.
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [2] Cancer Prognosis Using Artificial Intelligence-Based Techniques
    Surbhi Gupta
    Yogesh Kumar
    SN Computer Science, 2022, 3 (1)
  • [3] Review of artificial intelligence-based bridge damage detection
    Zhang, Yang
    Yuen, Ka-Veng
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (09)
  • [4] A Review on the Classification of Partial Discharges in Medium-Voltage Cables: Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques
    Kumar, Haresh
    Shafiq, Muhammad
    Kauhaniemi, Kimmo
    Elmusrati, Mohammed
    ENERGIES, 2024, 17 (05)
  • [5] Network intrusion detection system: A survey on artificial intelligence-based techniques
    Habeeb, Mohammed Sayeeduddin
    Babu, T. Ranga
    EXPERT SYSTEMS, 2022, 39 (09)
  • [6] Artificial Intelligence-Based Approach for Forced Oscillation Source Detection and Classification
    Chan, Steve
    Nopphawan, Parnmook
    2020 8TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSIS (CMD 2020), 2020, : 186 - 189
  • [7] Artificial intelligence-based techniques for analysis of body cavity fluids: a review
    Mir, Aftab Ahmad
    Sarwar, Abid
    ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (06) : 4019 - 4061
  • [8] Artificial intelligence-based techniques for analysis of body cavity fluids: a review
    Aftab Ahmad Mir
    Abid Sarwar
    Artificial Intelligence Review, 2021, 54 : 4019 - 4061
  • [9] A Review of the Artificial Intelligence-based Image Classification of Fishes in the Global Oceans
    Zhou P.
    Li C.
    Bu Y.
    Zhou Z.
    Wang C.
    Shen H.
    Pan X.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (05): : 1853 - 1864
  • [10] Artificial Intelligence-Based Image Classification Techniques for Clinician Diagnosis of Skin Cancer
    Chamakura, Shreyanth R.
    Prasad, P. W. C.
    Albabawat, Ali Abas
    Kaur, Hanspreet
    Nizamani, Qurat Ul Ain
    Salah, Razwan Mohmed
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INNOVATIONS IN COMPUTING RESEARCH (ICR'22), 2022, 1431 : 102 - 111