Metal-organic framework derived gradient interfacial layer for stable lithium metal anode

被引:0
|
作者
Shi, Yanbin [1 ]
Yang, Shaohua [3 ,4 ]
Sun, Xiangru [1 ]
Ai, Guo [1 ]
Zhang, Ting [5 ]
Wu, Fugen [4 ]
Mao, Wenfeng [2 ]
机构
[1] Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin,300387, China
[2] Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin,300387, China
[3] Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, No. 5 Electronic Research Institute of the Ministry of Industry and Information Technology, Guangzhou,510610, China
[4] School of Physics & Optoeletronic Engineering, Guangdong University of Technology, Guangzhou,510006, China
[5] Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,999077, Hong Kong
基金
中国国家自然科学基金;
关键词
Lithium compounds - Lithium batteries - Metal-Organic Frameworks - Cobalt compounds - Lithium - Passivation;
D O I
暂无
中图分类号
学科分类号
摘要
The inhomogeneous deposition of lithium metal and the growth of dendrite are the key challenges for the practical application of lithium metal anode (LMA). Instead of conventional dendrite suppression strategies with mechanically strong overlayers, herein we show a bottom-up deposition and surface-regulation strategy via gradient existence of electrical-passivated, ion-conducted and anion regulated top layer (zeolitic imidazolate frame work-8, ZIF-8) and lithiophilic, electronic-conductive bottom layer (carbonized ZIF-8) to construct lithophilicity/conductivity gradient interfacial layer. The resulting LMA with a gradient interfacial layer can eliminate surface Li reduction, homogenize Li+ flux, and guide Li deposition in a bottom-up manner, which enables long-term stable Li-metal plating/stripping. This strategy is further demonstrated to provide substantially improved cycle stability and rate capability in full cells with LiCoO2 as the cathode. Moreover, this facial and effective gradient interfacial layer design not only enables a favored deposition and regulation strategy for next-generation lithium-metal batteries but can be widely applicable among varied MOF materials with a delicate tune of interaction mechanisms. © 2022
引用
收藏
相关论文
共 50 条
  • [1] Metal-organic framework derived gradient interfacial layer for stable lithium metal anode
    Shi, Yanbin
    Yang, Shaohua
    Sun, Xiangru
    Ai, Guo
    Zhang, Ting
    Wu, Fugen
    Mao, Wenfeng
    ELECTROCHIMICA ACTA, 2022, 417
  • [2] Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
    Huimin Zhang
    Xiaobin Liao
    Yuepeng Guan
    Yu Xiang
    Meng Li
    Wenfeng Zhang
    Xiayu Zhu
    Hai Ming
    Lin Lu
    Jingyi Qiu
    Yaqin Huang
    Gaoping Cao
    Yusheng Yang
    Liqiang Mai
    Yan Zhao
    Hao Zhang
    Nature Communications, 9
  • [3] Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
    Zhang, Huimin
    Liao, Xiaobin
    Guan, Yuepeng
    Xiang, Yu
    Li, Meng
    Zhang, Wenfeng
    Zhu, Xiayu
    Ming, Hai
    Lu, Lin
    Qiu, Jingyi
    Huang, Yaqin
    Cao, Gaoping
    Yang, Yusheng
    Mai, Liqiang
    Zhao, Yan
    Zhang, Hao
    NATURE COMMUNICATIONS, 2018, 9
  • [4] Covalent Organic Framework as an Efficient Protection Layer for a Stable Lithium-Metal Anode
    He, Jiarui
    Bhargav, Amruth
    Manthiram, Arumugam
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (18)
  • [5] A metal-organic framework derived electrical insulating-conductive double-layer configuration for stable lithium metal anodes
    Man, Jianzong
    Liu, Wenlong
    Zhang, Haibang
    Liu, Kun
    Cui, Yongfu
    Yin, Jinpeng
    Wang, Xinyu
    Sun, Juncai
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (23) : 13661 - 13669
  • [6] ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes
    Wang, Leying
    Zhu, Xiayu
    Guan, Yuepeng
    Zhang, Jinliang
    Ai, Fei
    Zhang, Wenfeng
    Xiang, Yu
    Vijayan, Srinivasapriyan
    Li, Guodong
    Huang, Yaqin
    Cao, Gaoping
    Yang, Yusheng
    Zhang, Hao
    ENERGY STORAGE MATERIALS, 2018, 11 : 191 - 196
  • [7] A conductive-dielectric gradient framework for stable lithium metal anode
    Li, Jing
    Zou, Peichao
    Chiang, Sum Wai
    Yao, Wentao
    Wang, Yang
    Liu, Peng
    Liang, Caiwu
    Kang, Feiyu
    Yang, Cheng
    ENERGY STORAGE MATERIALS, 2020, 24 : 700 - 706
  • [8] An exceptionally stable functionalized metal-organic framework for lithium storage
    Lin, Yichao
    Zhang, Qiuju
    Zhao, Chongchong
    Li, Huailong
    Kong, Chunlong
    Shen, Cai
    Chen, Liang
    CHEMICAL COMMUNICATIONS, 2015, 51 (04) : 697 - 699
  • [9] Rearrange SEI with artificial organic layer for stable lithium metal anode
    Kang, Danmiao
    Hart, Noam
    Koh, Joonho
    Ma, Linge
    Liang, Wenbin
    Xu, Jing
    Sardar, Saydul
    Lemmon, John P.
    ENERGY STORAGE MATERIALS, 2020, 24 (24) : 618 - 625
  • [10] Regulating interfacial behavior of zinc metal anode via metal-organic framework functionalized separator
    Ruotong Li
    Liang Pan
    Ziyu Peng
    Ningning Zhao
    Zekun Zhang
    Jing Zhu
    Lei Dai
    Ling Wang
    Zhangxing He
    Journal of Energy Chemistry, 2024, 93 (06) : 213 - 220