A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images

被引:0
|
作者
Abdeltawab H. [1 ]
Khalifa F. [1 ]
Taher F. [2 ]
Alghamdi N.S. [3 ]
Ghazal M. [1 ]
Beache G. [4 ]
Mohamed T. [5 ]
Keynton R. [1 ]
El-Baz A. [1 ]
机构
[1] Department of Bioengineering, University of Louisville, Louisville, 40292, KY
[2] College of Technological Innovation, Zayed University, Dubai
[3] College of Computer and Information Science, Princess Nourah bint Abdulrahman University
[4] Department of Radiology, University of Louisville, Louisville, 40202, KY
[5] Institute of Molecular Cardiology, University of Louisville, 40202, KY
关键词
Cardiac MR; Cardiac parameters; Deep learning; Left ventricle; Segmentation;
D O I
10.1016/j.compmedimag.2020.101717
中图分类号
学科分类号
摘要
Cardiac MRI has been widely used for noninvasive assessment of cardiac anatomy and function as well as heart diagnosis. The estimation of physiological heart parameters for heart diagnosis essentially require accurate segmentation of the Left ventricle (LV) from cardiac MRI. Therefore, we propose a novel deep learning approach for the automated segmentation and quantification of the LV from cardiac cine MR images. We aim to achieve lower errors for the estimated heart parameters compared to the previous studies by proposing a novel deep learning segmentation method. Our framework starts by an accurate localization of the LV blood pool center-point using a fully convolutional neural network (FCN) architecture called FCN1. Then, a region of interest (ROI) that contains the LV is extracted from all heart sections. The extracted ROIs are used for the segmentation of LV cavity and myocardium via a novel FCN architecture called FCN2. The FCN2 network has several bottleneck layers and uses less memory footprint than conventional architectures such as U-net. Furthermore, a new loss function called radial loss that minimizes the distance between the predicted and true contours of the LV is introduced into our model. Following myocardial segmentation, functional and mass parameters of the LV are estimated. Automated Cardiac Diagnosis Challenge (ACDC-2017) dataset was used to validate our framework, which gave better segmentation, accurate estimation of cardiac parameters, and produced less error compared to other methods applied on the same dataset. Furthermore, we showed that our segmentation approach generalizes well across different datasets by testing its performance on a locally acquired dataset. To sum up, we propose a deep learning approach that can be translated into a clinical tool for heart diagnosis. © 2020 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images
    Abdeltawab, Hisham
    Khalifa, Fahmi
    Taher, Fatma
    Alghamdi, Norah Saleh
    Ghazal, Mohammed
    Beache, Garth
    Mohamed, Tamer
    Keynton, Robert
    El-Baz, Ayman
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 81
  • [2] A Novel Deep Learning Approach for Left Ventricle Automatic Segmentation in Cardiac Cine MR
    Abdeltawab, Hisham
    Khalifa, Fahmi
    Taher, Fatma
    Beache, Garth
    Mohamed, Tamer
    Elmaghraby, Adel
    Ghazal, Mohammed
    Keynton, Robert
    El-Baz, Ayman
    2019 FIFTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2019, : 16 - 19
  • [3] Automatic Segmentation of Left Ventricle in Cardiac Cine MRI Images Based on Deep Learning
    Zhou, Tian
    Icke, Ilknur
    Dogdas, Belma
    Parimal, Sarayu
    Sampath, Smita
    Forbes, Joseph
    Bagchi, Ansuman
    Chin, Chih-Liang
    Chen, Antong
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [4] Deep Learning-based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study
    Tao, Qian
    Yan, Wenjun
    Wang, Yuanyuan
    Paiman, Elisabeth H. M.
    Shamonin, Denis P.
    Garg, Pankaj
    Plein, Sven
    Huang, Lu
    Xia, Liming
    Sramko, Marek
    Tintera, Jarsolav
    de Roos, Albert
    Lamb, Hildo J.
    van der Geest, Rob J.
    RADIOLOGY, 2019, 290 (01) : 81 - 88
  • [5] An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images
    Ma, Yurun
    Wang, Li
    Ma, Yide
    Dong, Min
    Du, Shiqiang
    Sun, Xiaoguang
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (11) : 1951 - 1964
  • [6] An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images
    Yurun Ma
    Li Wang
    Yide Ma
    Min Dong
    Shiqiang Du
    Xiaoguang Sun
    International Journal of Computer Assisted Radiology and Surgery, 2016, 11 : 1951 - 1964
  • [7] An Image-Based Comprehensive Approach for Automatic Segmentation of Left Ventricle from Cardiac Short Axis Cine MR Images
    Su Huang
    Jimin Liu
    Looi Chow Lee
    Sudhakar K Venkatesh
    Lynette Li San Teo
    Christopher Au
    Wieslaw L. Nowinski
    Journal of Digital Imaging, 2011, 24 : 598 - 608
  • [8] An Image-Based Comprehensive Approach for Automatic Segmentation of Left Ventricle from Cardiac Short Axis Cine MR Images
    Huang, Su
    Liu, Jimin
    Lee, Looi Chow
    Venkatesh, Sudhakar K.
    Teo, Lynette Li San
    Au, Christopher
    Nowinski, Wieslaw L.
    JOURNAL OF DIGITAL IMAGING, 2011, 24 (04) : 598 - 608
  • [9] Transfer Learning for the Fully Automatic Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images
    Chen, Antong
    Zhou, Tian
    Icke, Ilknur
    Parimal, Sarayu
    Dogdas, Belma
    Forbes, Joseph
    Sampath, Smita
    Bagchi, Ansuman
    Chin, Chih-Liang
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 : 21 - 31
  • [10] Automated segmentation of left ventricle in cine cardiac mr images
    YingLi Lu
    Perry Radau
    Kim A Connelly
    Alexander Dick
    Graham A Wright
    Journal of Cardiovascular Magnetic Resonance, 12 (Suppl 1)