Blend of P3HT and Spiro-OMeTAD as photoactive layer and hole transport layer in hybrid solar cell

被引:0
|
作者
Hao Y. [1 ]
Li J. [1 ]
Qian J. [1 ]
Pei J. [1 ]
Li Y. [1 ]
机构
[1] College of Sciences, Hebei University of Science and Technology, Shijiazhuang
来源
Hao, Yanzhong (yzhao@hebust.edu.cn) | 1600年 / Science Press卷 / 42期
关键词
Hole-transport materials; Hybrid solar cells; Power conversion efficiency; Sb[!sub]2[!/sub]S[!sub]3[!/sub] nanoparticles; TiO[!sub]2[!/sub] nanorods;
D O I
10.19912/j.0254-0096.tynxb.2019-1364
中图分类号
学科分类号
摘要
A blend P3HT and Spiro-OMeTAD is used as photoactive layer and hole-transport material which is coated on TiO2 nanorod/Sb2S3 nanoparticles composite film to prepare the hybrid solar cell. In the composite film, Sb2S3 nanoparticles are prepared with different ratios of antimony source and sulfide source (Sb/S). The microstructure and photovoltaic performance of the hybrid solar cell are studied. The power conversion efficiency of the hybrid solar cell is 4.57% when FTO/TiO2/Sb2S3 is 1/1, and P3HT/Spiro-OMeTAD is 15 mg/1 mL, with the structure of FTO/TiO2(NR)/Sb2S3(1/1)/P3HT:Spiro-OMeTAD(15 mg:1 mL)/Ag. © 2021, Solar Energy Periodical Office Co., Ltd. All right reserved.
引用
收藏
页码:459 / 464
页数:5
相关论文
共 16 条
  • [1] YANG L K, WANG X, MAI X M, Et al., Constructing efficient mixed-ion perovskite solar cells based on TiO<sub>2</sub> nanorod array, Journal of colloid and interface science, 534, pp. 459-468, (2019)
  • [2] ZHAO J, LI Y, CAI N, Et al., Hydrothermal preparation of one-dimensional TiO<sub>2</sub> and applied in DSCs, Acta energiae solaris sinica, 31, 3, pp. 312-316, (2010)
  • [3] O'REGAN B, GRATZEL M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO<sub>2</sub> films, Nature, 353, 6346, pp. 737-740, (1991)
  • [4] CHANG J A, RHEE J H, IM S H, Et al., High-performance nanostructured inorganic-organic hetero junction solar cells, Nano letters, 10, 7, pp. 2609-2612, (2010)
  • [5] QI J J, CHEN J W, MENG W L, Et al., Recent advances in hybrid solar cells based on metal oxide nanostructures, Synthetic metals, 222, pp. 42-65, (2016)
  • [6] PEI J, FENG K N, ZHAO X, Et al., ZnO-based inverted hybrid solar cells: Technical adjustment for performance optimization step by step, Optics communications, 427, 15, pp. 294-300, (2018)
  • [7] ITZHAIK Y, NIITSOO O, PAGE M, Et al., Sb<sub>2</sub>S<sub>3</sub>-sensitized nanoporous TiO<sub>2</sub> solar cells, Journal of physical chemistry C, 113, 11, pp. 4254-4256, (2009)
  • [8] MAITI N, IM S H, LIM C S, Et al., A chemical precursor for depositing Sb<sub>2</sub>S<sub>3</sub> onto mesoporous TiO<sub>2</sub> layers in nonaqueous media and its application to solar cells, Dalton transactions, 41, 38, pp. 11569-11572, (2012)
  • [9] CHOI Y C, LEE D U, NOH J H, Et al., Highly improved Sb<sub>2</sub>S<sub>3</sub> sensitized-inorganic-organic hetero junction solar cells and quantification of traps by deep-level transient spectroscopy, Advanced functional materials, 24, 23, pp. 3587-3592, (2014)
  • [10] LI W, PENG Z Y, SUN Z, Et al., Orientation modulation of ZnO nanorods on charge transfer performance enhancement for Sb<sub>2</sub>S<sub>3</sub> quantum dot sensitized solar cells, Journal of alloys and compounds, 816, pp. 152628-152634, (2020)