共 15 条
- [1] Chang E.T., Adami H.O., The enigmatic epidemiology of nasopharyngeal carcinoma, Cancer Epidemiology and Prevention Biomarkers, 15, 10, pp. 1765-1777, (2006)
- [2] Stewart B.W., Wild C., World Cancer Report 2014, (2014)
- [3] Deng W., Huang T.-R., Chen W.-Q., Et al., Analysis of the incidence and mortality of nasopharyngeal carcinoma in China from 2003 to 2007, Tumor, 32, 3, pp. 189-193, (2012)
- [4] Huang K.W., Zhao Z.Y., Gong Q., Et al., Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy, 201537th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2968-2972, (2015)
- [5] Ritthipravat P., Tatanum C., Bhongmakapat T., Et al., Automatic segmentation of nasopharyngeal carcinoma from CT images, 2008 International Conference on BioMedical Engineering and Informatics, 2, pp. 18-22, (2008)
- [6] Zhou J., Chan K.L., Xu P., Et al., Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006, pp. 1364-1367, (2006)
- [7] Mohammed M.A., Ghani M.K.A., Hamed R.I., Et al., Artificial neural networks for automatic segmentation and identification of nasopharyngeal carcinoma, Journal of Computer Science, 21, pp. 263-274, (2017)
- [8] Men K., Chen X., Zhang Y., Et al., Deep deconvolutional neural network for Target segmentation of nasopharyngeal cancer in Planning computed Tomography images, Frontiers in Oncology, 7, (2017)
- [9] Simonyan K., Zisserman A., Very deep convolutional networks for large-scale image recognition, (2014)
- [10] Li Q.L., Xu Y., Chen Z., Et al., Tumor segmentation in contrastenhanced magnetic resonance imaging for nasopharyngeal carcinoma: deep learning with convolutional neural network, BioMed Research International, 2018, 5, pp. 1-7, (2018)