Investigation of copper oxidation states in plasmonic nanomaterials by XAS and Raman spectroscopy

被引:8
|
作者
Queffélec C. [1 ]
Forato F. [1 ]
Bujoli B. [1 ]
Knight D.A. [2 ]
Fonda E. [3 ]
Humbert B. [4 ]
机构
[1] Université de Nantes, CNRS, CEISAM, UMR 6230, Nantes
[2] Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, 32901, FL
[3] Synchrotron SOLEIL, L'Ormes des Merisiers, Saint Aubin BP-48, Gif-Sur-Yvette, Cedex
[4] Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, 2 rue de la Houssinière B.P. 32229, Nantes, Cedex 3
来源
Phys. Chem. Chem. Phys. | 2020年 / 4卷 / 2193-2199期
关键词
Plasmonic core-shell-isolated nanoparticles are promising nanoplatforms for photocatalysis and for low detection analysis. This paper describes the characterization of a 2,2′-bipyridine phosphonate functionalized Ag@TiO2 nanocomposite which complexes copper ions by enhanced Raman spectroscopy and X-ray absorption (XANES and EXAFS). We distinguished Cu(i) from Cu(ii) complexes using shell-isolated nanoparticle enhanced Raman (SHINERS) combined with XAS spectroscopy. © 2020 the Owner Societies;
D O I
10.1039/c9cp06478h
中图分类号
学科分类号
摘要
Plasmonic core-shell-isolated nanoparticles are promising nanoplatforms for photocatalysis and for low detection analysis. This paper describes the characterization of a 2,2′-bipyridine phosphonate functionalized Ag@TiO2 nanocomposite which complexes copper ions by enhanced Raman spectroscopy and X-ray absorption (XANES and EXAFS). We distinguished Cu(i) from Cu(ii) complexes using shell-isolated nanoparticle enhanced Raman (SHINERS) combined with XAS spectroscopy. © 2020 the Owner Societies.
引用
收藏
页码:2193 / 2199
页数:6
相关论文
共 50 条
  • [1] Copper oxidation studied by in situ Raman spectroscopy
    Schennach, R
    Gupper, A
    MATERIALS, TECHNOLOGY AND RELIABILITY FOR ADVANCED INTERCONNECTS AND LOW-K DIELECTRICS-2003, 2003, 766 : 427 - 432
  • [2] Tip-Enhanced Raman Analysis of Plasmonic and Photocatalytic Properties of Copper Nanomaterials
    Li, Zhandong
    Kurouski, Dmitry
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (34): : 8335 - 8340
  • [3] Raman Spectroscopy with Nanoparticles for Investigation of Protein Tyrosine Oxidation
    Sebestik, Jaroslav
    JOURNAL OF PEPTIDE SCIENCE, 2022, 28
  • [4] Monitoring surface transformations of metal carbodiimide water oxidation catalysts by operando XAS and Raman spectroscopy
    Mueller, Rafael J.
    Lan, Jinggang
    Lienau, Karla
    More, Rene
    Triana, C. A.
    Iannuzzi, Marcella
    Patzke, Greta R.
    DALTON TRANSACTIONS, 2018, 47 (31) : 10759 - 10766
  • [5] Raman Spectroscopy in the Analysis of Cellulose Nanomaterials
    Agarwal, Umesh P.
    NANOCELLULOSES: THEIR PREPARATION, PROPERTIES, AND APPLICATIONS, 2017, 1251 : 75 - 90
  • [6] Nanomaterials for Surface Enhanced Raman Spectroscopy
    Kudelski, Andrzej
    NANOMATERIALS, 2023, 13 (03)
  • [7] Investigation of the titanium oxidation states by Auger electron spectroscopy
    Tass, Z., 1600, Elsevier Science B.V., Amsterdam, Netherlands (331-333):
  • [8] DIRECT INVESTIGATION OF THE OXIDATION OF YBCO BY IN-SITU RAMAN-SPECTROSCOPY
    FANTINI, S
    ULIVI, L
    ZOPPI, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (10-11): : 1777 - 1784
  • [9] Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials
    Li, Ying-Sing
    Church, Jeffrey S.
    JOURNAL OF FOOD AND DRUG ANALYSIS, 2014, 22 (01) : 29 - 48
  • [10] A nondestructive tool for nanomaterials: Raman and photoluminescence spectroscopy
    Singha, A
    Dhar, P
    Roy, A
    AMERICAN JOURNAL OF PHYSICS, 2005, 73 (03) : 224 - 233