An adaptive kernel width convex combination method for maximum correntropy criterion

被引:0
|
作者
Fontes, Aluisio I. R. [1 ]
Linhares, Leandro L. S. [1 ]
F. Guimarães, João P. [2 ,3 ]
Silveira, Luiz F. Q. [3 ]
Martins, Allan M. [3 ]
机构
[1] Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), BR 405, KM 154, S/N, Chico Cajá, Pau dos Ferros,RN,CEP 59900-000, Brazil
[2] Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), BR 406, Km 73, n∘ 3500, Perímetro Rural, João Câmara,RN,59550-000, Brazil
[3] Department of Computer Engineering and Automation (DCA), Federal University of Rio Grande do Norte (UFRN), UFRN Campus Universitário Lagoa Nova, Natal,RN,59078-970, Brazil
关键词
Data handling - Impulse noise - Iterative methods - Adaptive filters;
D O I
10.1186/s13173-021-00111-z
中图分类号
学科分类号
摘要
Recently, the maximum correntropy criterion (MCC) has been successfully applied in numerous applications regarding nonGaussian data processing. MCC employs a free parameter called kernel width, which affects the convergence rate, robustness, and steady-state performance of the adaptive filtering. However, determining the optimal value for such parameter is not always a trivial task. Within this context, this paper proposes a novel method called adaptive convex combination maximum correntropy criterion (ACCMCC), which combines an adaptive kernel algorithm with convex combination techniques. ACCMCC takes advantage from a convex combination of two adaptive MCC-based filters, whose kernel widths are adjusted iteratively as a function of the minimum error value obtained in a predefined estimation window. Results obtained in impulsive noise environment have shown that the proposed approach achieves equivalent convergence rates but with increased accuracy and robustness when compared with other similar algorithms reported in literature. © 2021, The Author(s).
引用
收藏
相关论文
共 50 条
  • [1] ADAPTIVE CONVEX COMBINATION OF KERNEL MAXIMUM CORRENTROPY CRITERION
    Shi, Long
    Yang, Yunchen
    [J]. 2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [2] Adaptive Filtering Under a Variable Kernel Width Maximum Correntropy Criterion
    Huang, Fuyi
    Zhang, Jiashu
    Zhang, Sheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (10) : 1247 - 1251
  • [3] Convex Combination of Multiple Adaptive Filters under the Maximum Correntropy Criterion
    Lu Mingfei
    Peng Siyuan
    Chen Badong
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (02) : 263 - 269
  • [4] Performance evaluation of the maximum complex correntropy criterion with adaptive kernel width update
    Aquino, Manoel B. L.
    Guimaraes, Joao P. F.
    Linhares, Leandro L. S.
    Fontes, Aluisio I. R.
    Martins, Allan M.
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2019, 2019 (01)
  • [5] Performance evaluation of the maximum complex correntropy criterion with adaptive kernel width update
    Manoel B. L. Aquino
    João P. F. Guimarães
    Leandro L. S. Linhares
    Aluísio I. R. Fontes
    Allan M. Martins
    [J]. EURASIP Journal on Advances in Signal Processing, 2019
  • [6] Kernel Adaptive Filtering with Maximum Correntropy Criterion
    Zhao, Songlin
    Chen, Badong
    Principe, Jose C.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2012 - 2017
  • [7] Convex Combination of Adaptive Filters under the Maximum Correntropy Criterion in Impulsive Interference
    Shi, Liming
    Lin, Yun
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (11) : 1385 - 1388
  • [8] An Improved Variable Kernel Width for Maximum Correntropy Criterion Algorithm
    Shi, Long
    Zhao, Haiquan
    Zakharov, Yuriy
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (07) : 1339 - 1343
  • [9] Robust variable kernel width for maximum correntropy criterion algorithm
    Huang, Wei
    Shan, Haojie
    Xu, Jinshan
    Yao, Xinwei
    [J]. SIGNAL PROCESSING, 2021, 182
  • [10] Statistics variable kernel width for maximum correntropy criterion algorithm
    Zhou, Shuyong
    Zhao, Haiquan
    [J]. SIGNAL PROCESSING, 2020, 176