On the mathematical validity of the Higuchi method

被引:0
|
作者
Liehr, Lukas [1 ]
Massopust, Peter [1 ]
机构
[1] Centre of Mathematics, Technical University of Munich, Boltzmannstrasse 3, Garching b. Munich,85748, Germany
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] On the mathematical validity of the Higuchi method
    Liehr, Lukas
    Massopust, Peter
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 402
  • [2] Novel mathematical method for quantitative expression of deviation from the Higuchi model
    Gohel M.C.
    Panchal M.K.
    Jogani V.V.
    AAPS PharmSciTech, 1 (4) : 6
  • [3] The Higuchi method for the fractal dimension
    Le Tavernier, E
    Simard, P
    Bulo, M
    Boichu, D
    SIGNAL PROCESSING, 1998, 65 (01) : 115 - 128
  • [4] Mathematical Incorrectness of So-Called Higuchi‘s Fractal Dimension
    Martišek D.
    Mendel, 2022, 28 (02) : 93 - 96
  • [5] Multiscale Higuchi’s fractal dimension method
    A. Yilmaz
    G. Unal
    Nonlinear Dynamics, 2020, 101 : 1441 - 1455
  • [6] Multiscale Higuchi's fractal dimension method
    Yilmaz, A.
    Unal, G.
    NONLINEAR DYNAMICS, 2020, 101 (02) : 1441 - 1455
  • [7] STUDY ON VALIDITY OF HIGUCHI LAW IN THE CASE OF TABLETS WITH HIGH ACTIVE PRINCIPLE CONTENT
    FESSI, H
    PUISIEUX, F
    MARTY, JP
    CARSTENSEN, JT
    PHARMACEUTICA ACTA HELVETIAE, 1980, 55 (10): : 261 - 269
  • [8] Efficient calculation of fractal properties via the Higuchi method
    Wanliss, J. A.
    Wanliss, Grace E.
    NONLINEAR DYNAMICS, 2022, 109 (04) : 2893 - 2904
  • [9] Efficient calculation of fractal properties via the Higuchi method
    J. A. Wanliss
    Grace E. Wanliss
    Nonlinear Dynamics, 2022, 109 : 2893 - 2904
  • [10] HIGUCHI,KENTARO
    HIGUCHI, K
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 1987, 17 (06) : 1080 - 1081