Serempy: Seismic reservoir modeling python library

被引:0
|
作者
Grana, Dario [1 ]
de Figueiredo, Leandro [2 ]
机构
[1] Department of Geology and Geophysics, School of Energy Resources, University of Wyoming, United States
[2] LTrace
关键词
High level languages - Markov processes - Numerical methods - Seismic response - Elasticity - Monte Carlo methods - Well logging - Forecasting - Geophysical prospecting - [!text type='Python']Python[!/text] - Seismic waves;
D O I
暂无
中图分类号
学科分类号
摘要
Seismic reservoir characterization is a subfield of geophysics that combines seismic and rock physics modeling with mathematical inverse theory to predict the reservoir variables from the measured seismic data. An open-source comprehensive modeling library that includes the main concepts and tools is still missing. We present a Python library named SeReMpy with the state of the art of seismic reservoir modeling for reservoir properties characterization using seismic and rock physics models and Bayesian inverse theory. The most innovative component of the library is the Bayesian seismic and rock physics inversion to predict the spatial distribution of petrophysical and elastic properties from seismic data. The inversion algorithms include Bayesian analytical solutions of the linear-Gaussian inverse problem and Markov chain Monte Carlo (McMC) numerical methods for non-linear problems. The library includes four modules: geostatistics, rock physics, facies, and inversion, as well as several scripts with illustrative examples and applications. We present a detailed description of the scripts that illustrate the use of the functions of module and describe how to apply the codes to practical inversion problems using synthetic and real data. The applications include a rock physics model for the prediction of elastic properties and facies using well log data, a geostatistical simulation of continuous and discrete properties using well logs, a geostatistical interpolation and simulation of two-dimensional maps of temperature, an elastic inversion of partial stacked seismograms with Bayesian linearized AVO inversion, a rock physics inversion of partial stacked seismograms with McMC methods, and a two-dimensional seismic inversion. © 2021 Society of Exploration Geophysicists. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [1] SeReMpy: Seismic reservoir modeling Python']Python library
    Grana, Dario
    de Figueiredo, Leandro
    [J]. GEOPHYSICS, 2021, 86 (06) : F61 - F69
  • [2] The JBEI quantitative metabolic modeling library (jQMM): a python']python library for modeling microbial metabolism
    Birkel, Garrett W.
    Ghosh, Amit
    Kumar, Vinay S.
    Weaver, Daniel
    Ando, David
    Backman, Tyler W. H.
    Arkin, Adam P.
    Keasling, Jay D.
    Martin, Hector Garcia
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [3] rockphypy: An extensive Python']Python library for rock physics modeling
    Yu, Jiaxin
    Mukerji, Tapan
    Avseth, Per
    [J]. SOFTWAREX, 2023, 24
  • [4] ModFossa: A library for modeling ion channels using Python']Python
    Ferneyhough, Gareth B.
    Thibealut, Corey M.
    Dascalu, Sergiu M.
    Harris, Frederick C., Jr.
    [J]. JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2016, 14 (03)
  • [5] The JBEI quantitative metabolic modeling library (jQMM): a python']python library for modeling microbial metabolism (vol 18, 1, 2017)
    Birkel, Garrett W.
    Ghosh, Amit
    Kumar, Vinay S.
    Weaver, Daniel
    Ando, David
    Backman, Tyler W. H.
    Arkin, Adam P.
    Keasling, Jay D.
    Garcia Martin, Hector
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [6] The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism
    Garrett W. Birkel
    Amit Ghosh
    Vinay S. Kumar
    Daniel Weaver
    David Ando
    Tyler W. H. Backman
    Adam P. Arkin
    Jay D. Keasling
    Héctor García Martín
    [J]. BMC Bioinformatics, 18
  • [7] Pypvcell: An Open-Source Solar Cell Modeling Library in Python']Python
    Lee, Kan-Hua
    Araki, Kenji
    Elleuch, Omar
    Kojima, Nobuaki
    Yamaguchi, Masafumi
    [J]. 2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 359 - 362
  • [8] Erratum to: The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism
    Garrett W. Birkel
    Amit Ghosh
    Vinay S. Kumar
    Daniel Weaver
    David Ando
    Tyler W. H. Backman
    Adam P. Arkin
    Jay D. Keasling
    Héctor García Martín
    [J]. BMC Bioinformatics, 18
  • [9] EEGraph: An open-source Python']Python library for modeling electroencephalograms using graphs
    Maitin, Ana M.
    Nogales, Alberto
    Chazarra, Pedro
    Jose Garcia-Tejedor, Alvaro
    [J]. NEUROCOMPUTING, 2023, 519 : 127 - 134
  • [10] Python']Python BMDS: A Python']Python interface library and web application for the canonical EPA dose-response modeling software
    Pham, Ly Ly
    Watford, Sean
    Friedman, Katie Paul
    Wignall, Jessica
    Shapiro, Andrew J.
    [J]. REPRODUCTIVE TOXICOLOGY, 2019, 90 : 102 - 108