Plasma catalysis has recently gained increased attention for its application in gas conversion, notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels. As this field is still in its early developmental stages, there is a crucial necessity to explore the synergistic mechanism between plasma and catalysts. The optimization of catalysts is imperative to improve their selectivity and conversion rates for desired products in a plasma environment. Additionally, delving into microscale investigations of plasma characteristics, such as electron temperature and the density of energetic species, is essential to enhance the stability and activity of catalysts. This review examines recent advancements in various methane conversion techniques, encompassing Dry Reforming of Methane, Steam Methane Reforming, Partial Oxidation of Methane, and Methane Decomposition utilizing non-thermal dielectric barrier discharge (DBD) plasma. The aim is to gain a deeper understanding of plasma-catalyst interactions and to refine catalyst selection strategies for maximizing the production of desired products such as syngas, oxygenates, or higher hydrocarbons. The review delves into the catalytic mechanisms that delineate the synergistic effects between DBD plasma and catalyst in each technology, shedding light on the role of diverse catalytic properties in activating methane molecules - a pivotal step in hybrid plasma-catalytic reactions. Various approaches employed by researchers in exploring suitable catalysts and optimal reaction conditions to bolster CH4 conversion rates and selectivity using DBD plasma are discussed. Additionally, the review identifies gaps in the realm of plasma catalysis, underscoring the necessity for further research to fully understand the underlying principles of plasma and catalyst which are not trivial to uncover. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.