Real-world dexterous object manipulation based deep reinforcement learning

被引:0
|
作者
Yao, Qingfeng [1 ]
Wang, Jilong [1 ]
Yang, Shuyu [1 ]
机构
[1] Westlake University, China
来源
arXiv | 2021年
关键词
461.4 Ergonomics and Human Factors Engineering - 723.4 Artificial Intelligence - 723.4.2 Machine Learning - 731.3 Specific Variables Control - 912.2 Management;
D O I
暂无
中图分类号
学科分类号
摘要
10
引用
收藏
相关论文
共 50 条
  • [1] Comparison of Model-Based and Model-Free Reinforcement Learning for Real-World Dexterous Robotic Manipulation Tasks
    Valencia, David
    Jia, John
    Li, Raymond
    Hayashi, Alex
    Lecchi, Megan
    Terezakis, Reuel
    Gee, Trevor
    Liarokapis, Minas
    MacDonald, Bruce A.
    Williams, Henry
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 871 - 878
  • [2] Benchmarking Structured Policies and Policy Optimization for Real-World Dexterous Object Manipulation
    Funk, Niklas
    Schaff, Charles
    Madan, Rishabh
    Yoneda, Takuma
    De Jesus, Julen Urain
    Watson, Joe
    Gordon, Ethan K.
    Widmaier, Felix
    Bauer, Stefan
    Srinivasa, Siddhartha S.
    Bhattacharjee, Tapomayukh
    Walter, Matthew R.
    Peters, Jan
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (01) : 478 - 485
  • [3] Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
    Rajeswaran, Aravind
    Kumar, Vikash
    Gupta, Abhishek
    Vezzani, Giulia
    Schulman, John
    Todorov, Emanuel
    Levine, Sergey
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [4] Real-world Robot Reaching Skill Learning Based on Deep Reinforcement Learning
    Liu, Naijun
    Lu, Tao
    Cai, Yinghao
    Wang, Rui
    Wang, Shuo
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4780 - 4784
  • [5] An Accurate Method Based on Deep Learning Architectures for Real-world Object Detection
    Yang, Li-juan
    Pan, Xiang
    Zhang, Jia-chi
    Zhou, Hong
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORK AND ARTIFICIAL INTELLIGENCE (CNAI 2018), 2018, : 363 - 372
  • [6] REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous Manipulation
    Hu, Zheyuan
    Rovinsky, Aaron
    Luo, Jianlan
    Kumar, Vikash
    Gupta, Abhishek
    Levine, Sergey
    [J]. CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [7] Dexterous Object Manipulation with an Anthropomorphic Robot Hand via Natural Hand Pose Transformer and Deep Reinforcement Learning
    Lopez, Patricio Rivera
    Oh, Ji-Heon
    Jeong, Jin Gyun
    Jung, Hwanseok
    Lee, Jin Hyuk
    Jaramillo, Ismael Espinoza
    Chola, Channabasava
    Lee, Won Hee
    Kim, Tae-Seong
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [8] Real-World Object Recognition for Robot Based on Lightweight Deep Multimodal Distance Learning
    Zhang, Xu
    Xue, Bin
    Jing, Feng
    [J]. 2020 5TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2020), 2020, : 33 - 36
  • [9] Tackling Real-World Autonomous Driving using Deep Reinforcement Learning
    Maramotti, Paolo
    Capasso, Alessandro Paolo
    Bacchiani, Giulio
    Broggi, Alberto
    [J]. 2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1274 - 1281
  • [10] Deep Offline Reinforcement Learning for Real-world Treatment Optimization Applications
    Nambiar, Mila
    Ghosh, Supriyo
    Ong, Priscilla
    Chan, Yu En
    Bee, Yong Mong
    Krishnaswamy, Pavitra
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4673 - 4684