Reinforcement learning in sparse-reward environments with hindsight policy gradients

被引:0
|
作者
Queen Mary University of London, London [1 ]
E1 4FZ, United Kingdom
不详 [2 ]
100-0004, Japan
不详 [3 ]
29056-264, Brazil
不详 [4 ]
6962, Switzerland
不详 [5 ]
6900, Switzerland
不详 [6 ]
6928, Switzerland
不详 [7 ]
6900, Switzerland
机构
来源
Neural Comp. | / 6卷 / 1498-1553期
关键词
Number:; -; Acronym:; IBM; Sponsor: International Business Machines Corporation; 742870; ERC; Sponsor: European Research Council; 200021_165675/1; SNF; Sponsor: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; 88881.133206/2016-01; CAPES; Sponsor: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior;
D O I
暂无
中图分类号
学科分类号
摘要
Reinforcement learning
引用
收藏
相关论文
共 50 条
  • [1] Reinforcement Learning in Sparse-Reward Environments With Hindsight Policy Gradients
    Rauber, Paulo
    Ummadisingu, Avinash
    Mutz, Filipe
    Schmidhuber, Juergen
    [J]. NEURAL COMPUTATION, 2021, 33 (06) : 1498 - 1553
  • [2] Planning-integrated Policy for Efficient Reinforcement Learning in Sparse-reward Environments
    Wulur, Christoper
    Weber, Cornelius
    Wermter, Stefan
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks
    Guo, Yijie
    Wu, Qiucheng
    Lee, Honglak
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6792 - 6800
  • [4] Adaptive Variance for Changing Sparse-Reward Environments
    Lin, Xingyu
    Guo, Pengsheng
    Florensa, Carlos
    Held, David
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 3210 - 3216
  • [5] A Novel State Space Exploration Method for the Sparse-Reward Reinforcement Learning Environment
    Liu, Xi
    Ma, Long
    Chen, Zhen
    Zheng, Changgang
    Chen, Ren
    Liao, Yong
    Yang, Shufan
    [J]. ARTIFICIAL INTELLIGENCE XL, AI 2023, 2023, 14381 : 216 - 221
  • [6] An Overview of Environmental Features that Impact Deep Reinforcement Learning in Sparse-Reward Domains
    Ocana, Jim Martin Catacora
    Capobianco, Roberto
    Nardi, Daniele
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2023, 76 : 1181 - 1218
  • [7] Hybrid Task Scheduling in Cloud Manufacturing With Sparse-Reward Deep Reinforcement Learning
    Wang, Xiaohan
    Laili, Yuanjun
    Zhang, Lin
    Liu, Yongkui
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, : 1 - 15
  • [8] An Overview of Environmental Features that Impact Deep Reinforcement Learning in Sparse-Reward Domains
    Ocana, Jim Martin Catacora
    Capobianco, Roberto
    Nardi, Daniele
    [J]. Journal of Artificial Intelligence Research, 2023, 76 : 1181 - 1218
  • [9] Deep reinforcement learning applied to a sparse-reward trading environment with intraday data
    Takara, Lucas de Azevedo
    Santos, Andre Alves Portela
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [10] Self-Supervised Online Reward Shaping in Sparse-Reward Environments
    Memarian, Farzan
    Goo, Wonjoon
    Lioutikov, Rudolf
    Niekum, Scott
    Topcu, Ufuk
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2369 - 2375