Classifiers ensemble of transfer learning for improved drill wear classification using convolutional neural network

被引:0
|
作者
Kurek, Jaroslaw [1 ]
Antoniuk, Izabella [1 ]
Gorski, Jaroslaw [2 ]
Jegorowa, Albina [2 ]
Swiderski, Bartosz [1 ]
Kruk, Michal [1 ]
Wieczorek, Grzegorz [1 ]
Pach, Jakub [1 ]
Orlowski, Arkadiusz [1 ]
Aleksiejuk-Gawron, Joanna [3 ]
机构
[1] Institute of Information Technology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
[2] Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
[3] Institute of Mechanical Engineering, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
来源
Machine Graphics and Vision | 2019年 / 28卷 / 1-4期
关键词
Drills;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:13 / 23
相关论文
共 50 条
  • [1] Classifiers ensemble of transfer learning for improved drill wear classification using convolutional neural network
    Kurek, Jaroslaw
    Antoniuk, Izabella
    Górski, Jaroslaw
    Jegorowa, Albina
    Świderski, Bartosz
    Kruk, Michal
    Wieczorek, Grzegorz
    Pach, Jakub
    Orlowski, Arkadiusz
    Aleksiejuk-Gawron, Joanna
    [J]. Machine Graphics and Vision, 2021, 28 (01): : 13 - 23
  • [2] Transfer learning in recognition of drill wear using convolutional neural network
    Kurek, Jaroslaw
    Wieczorek, Grzegorz
    Swiderski, Bartosz
    Kruk, Michal
    Jegorowa, Albina
    Osowski, Stanislaw
    [J]. PROCEEDINGS OF 2017 18TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING (CPEE), 2017,
  • [3] Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network
    Kurek, Jaroslaw
    Antoniuk, Izabella
    Górski, Jaroslaw
    Jegorowa, Albina
    Świderski, Bartosz
    Kruk, Michal
    Wieczorek, Grzegorz
    Pach, Jakub
    Orlowski, Arkadiusz
    Aleksiejuk-Gawron, Joanna
    [J]. Machine Graphics and Vision, 2019, 28 (1-4): : 3 - 12
  • [4] Workout Classification Using a Convolutional Neural Network in Ensemble Learning
    Bang, Gi-Seung
    Park, Seung-Bo
    [J]. SENSORS, 2024, 24 (10)
  • [5] Texture Classification Using Deep Convolutional Neural Network with Ensemble Learning
    Gupta, Krishan
    Jain, Tushar
    Sengupta, Debarka
    [J]. MINING INTELLIGENCE AND KNOWLEDGE EXPLORATION, MIKE 2018, 2018, 11308 : 341 - 350
  • [6] An ensemble learning framework for convolutional neural network based on multiple classifiers
    Yanyan Guo
    Xin Wang
    Pengcheng Xiao
    Xinzheng Xu
    [J]. Soft Computing, 2020, 24 : 3727 - 3735
  • [7] An ensemble learning framework for convolutional neural network based on multiple classifiers
    Guo, Yanyan
    Wang, Xin
    Xiao, Pengcheng
    Xu, Xinzheng
    [J]. SOFT COMPUTING, 2020, 24 (05) : 3727 - 3735
  • [8] Transfer learning for Hyperspectral image classification using convolutional neural network
    Liu, Yao
    Xiao, Chenchao
    [J]. MIPPR 2019: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2020, 11432
  • [9] Classification of mango disease using ensemble convolutional neural network
    Bezabh, Yohannes Agegnehu
    Ayalew, Aleka Melese
    Abuhayi, Biniyam Mulugeta
    Demlie, Tensay Nigussie
    Awoke, Eshete Ayenew
    Mengistu, Taye Endeshaw
    [J]. SMART AGRICULTURAL TECHNOLOGY, 2024, 8
  • [10] Classification of impinging jet flames using convolutional neural network with transfer learning
    Lee, Minwoo
    Yoon, Sangwoong
    Kim, Juhan
    Wang, Yuangang
    Lee, Keeman
    Park, Frank Chongwoo
    Sohn, Chae Hoon
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (03) : 1547 - 1556