Improving Adversarial Robustness via Finding Flat Minimum of the Weight Loss Landscape

被引:0
|
作者
Yan, Jiale [1 ]
Xu, Yang [1 ]
Zhang, Sicong [1 ]
Li, Kezi [1 ]
Xie, Xiaoyao [1 ]
机构
[1] Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University, Guiyang,550001, China
关键词
52;
D O I
10.53106/199115992023023401003
中图分类号
学科分类号
摘要
引用
收藏
页码:29 / 43
相关论文
共 33 条
  • [1] Improving Adversarial Robustness via Probabilistically Compact Loss with Logit Constraints
    Li, Xin
    Li, Xiangrui
    Pan, Deng
    Zhu, Dongxiao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8482 - 8490
  • [2] Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss
    Li, Pengcheng
    Yi, Jinfeng
    Zhou, Bowen
    Zhang, Lijun
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2909 - 2915
  • [3] Improving Adversarial Robustness via Attention and Adversarial Logit Pairing
    Li, Xingjian
    Goodman, Dou
    Liu, Ji
    Wei, Tao
    Dou, Dejing
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 4
  • [4] Improving Adversarial Robustness via Guided Complement Entropy
    Chen, Hao-Yun
    Liang, Jhao-Hong
    Chang, Shih-Chieh
    Pan, Jia-Yu
    Chen, Yu-Ting
    Wei, Wei
    Juan, Da-Cheng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4880 - 4888
  • [5] Improving Adversarial Robustness of Detector via Objectness Regularization
    Bao, Jiayu
    Chen, Jiansheng
    Ma, Hongbing
    Ma, Huimin
    Yu, Cheng
    Huang, Yiqing
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 252 - 262
  • [6] Improving Adversarial Robustness via Information Bottleneck Distillation
    Kuang, Huafeng
    Liu, Hong
    Wu, YongJian
    Satoh, Shin'ichi
    Ji, Rongrong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [7] Improving Adversarial Robustness via Promoting Ensemble Diversity
    Pang, Tianyu
    Xu, Kun
    Du, Chao
    Chen, Ning
    Zhu, Jun
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [8] Improving Adversarial Robustness of CNNs via Maximum Margin
    Wu, Jiaping
    Xia, Zhaoqiang
    Feng, Xiaoyi
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [9] Improving Adversarial Robustness via Mutual Information Estimation
    Zhou, Dawei
    Wang, Nannan
    Gao, Xinbo
    Han, Bo
    Wang, Xiaoyu
    Zhan, Yibing
    Liu, Tongliang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [10] Improving Adversarial Robustness via Distillation-Based Purification
    Koo, Inhwa
    Chae, Dong-Kyu
    Lee, Sang-Chul
    Cascio, Donato
    APPLIED SCIENCES-BASEL, 2023, 13 (20):