共 14 条
- [1] ITOH T, TSUJII S., A fast algorithm for computing multiplicative inverses in GF(2<sup>m</sup>) using normal bases, Information and Computation, 78, 3, pp. 171-177, (1988)
- [2] GRASSL M, LANGENBERG B, ROETTELER M, Et al., Applying grover’s algorithm to AES: Quantum resource estimates, 2016 7th International Conference on Post-Quantum Cryptography (PQCrypto 2016), pp. 29-43, (2016)
- [3] MASLOV D, MATHEW J, CHEUNG D, Et al., An O(m<sup>2</sup>)depth quantum algorithm for the elliptic curve discrete logarithm problem over GF(2<sup>m</sup>)<sup>a</sup>, Quantum Information & Computation, 9, 7, pp. 610-621, (2009)
- [4] KEPLEY S, STEINWANDT R., Quantum circuits for F<sub>2</sub><sup>n</sup>multiplication with subquadratic gate count, Quantum Information Processing, 14, 7, pp. 2373-2386, (2015)
- [5] ALMAZROOIE M, SAMSUDIN A, ABDULLAH R, Et al., Quantum reversible circuit of AES-128, Quantum Information Processing, 17, 5, pp. 1-30, (2018)
- [6] LANGENBERG B, PHAM H, STEINWANDT R., Reducing the cost of implementing the advanced encryption standard as a quantum circuit, IEEE Transactions on Quantum Engineering, 1, pp. 1-12, (2020)
- [7] FOWLER A G., Time-optimal quantum computation
- [8] HUANG Z, SUN S., Synthesizing quantum circuits of AES with lower T-depth and less qubits, 2022 28th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT 2022), pp. 614-644, (2023)
- [9] JANG K, BAKSI A, SONG G, Et al., Quantum analysis of AES
- [10] HOOF I., Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli gate count, Quantum Information & Computation, 20, pp. 721-735, (2020)