An IOV Spectrum Sharing Approach based on Multi-Agent Deep Reinforcement Learning

被引:0
|
作者
Qian, Haizhong [1 ]
Cai, Lili [1 ]
机构
[1] Information Engineering College, Jiangsu Maritime Institute, Nanjing,211199, China
关键词
Reinforcement learning;
D O I
10.1142/S0218488524400099
中图分类号
学科分类号
摘要
Highly dynamic Internet of Vehicles spectrum sharing can share spectrum owned by vehicle-to-infrastructure links through multiple workshop links to achieve efficient resource allocation. Aiming at the problem that the rapid variations in channel states in highly dynamic vehicular environments can make it challenging for base stations to gather and manage information about instantaneous channel states, we present a multi-agent deep reinforcement learning-based V2X spectrum access algorithm. The algorithm is designed to optimize the throughput of V2I user under V2V user delay and reliability constraints, and uses the experience gained from interacting with the communication environment to update the Q network to improve spectrum and power allocation strategies. Implicit collaborative agents are trained through an improved DQN model combined with dueling network architecture and long short-term memory network layers and public rewards. With lagged Q-learning and concurrent experience replay trajectories, the training process was stabilized and the non-stationarity problem caused by concurrent learning of multiple agents was resolved. Simulation results demonstrate that our presented algorithm achieves a mean successful payload delivery rate of 95.89%, which is 16.48% greater than that of the randomized baseline algorithm. Our algorithm obtains approximately the optimal value and shows performance close to the centralized brute force algorithm, which provides a better strategy for further minimizing the signaling overhead of the Internet of Vehicles communication system. © 2024 World Scientific Publishing Company.
引用
收藏
页码:571 / 592
相关论文
共 50 条
  • [1] Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning
    Liang, Le
    Ye, Hao
    Li, Geoffrey Ye
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (10) : 2282 - 2292
  • [2] A Hybrid Multi-Agent Reinforcement Learning Approach for Spectrum Sharing in Vehicular Networks
    Jamal, Mansoor
    Ullah, Zaib
    Naeem, Muddasar
    Abbas, Musarat
    Coronato, Antonio
    [J]. FUTURE INTERNET, 2024, 16 (05)
  • [3] Multi-Agent Reinforcement Learning for Spectrum Sharing in Vehicular Networks
    Liang, Le
    Ye, Hao
    Li, Geoffrey Ye
    [J]. 2019 IEEE 20TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC 2019), 2019,
  • [4] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [5] Spectrum Sharing in UAV-Assisted HetNet Based on CMB-AM Multi-Agent Deep Reinforcement Learning
    Guan, Wei
    Gao, Bo
    Xiong, Ke
    Lu, Yang
    [J]. IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [6] Dynamic Spectrum Sharing Based on Federated Learning and Multi-Agent Actor-Critic Reinforcement Learning
    Yang, Tongtong
    Zhang, Wensheng
    Bo, Yulian
    Sun, Jian
    Wang, Cheng-Xiang
    [J]. 2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 947 - 952
  • [7] An Auction-based Approach to Spectrum Allocation using Multi-agent Reinforcement Learning
    Abji, Nadeem
    Leon-Garcia, Alberto
    [J]. 2010 IEEE 21ST INTERNATIONAL SYMPOSIUM ON PERSONAL INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2010, : 2233 - 2238
  • [8] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    [J]. 2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [9] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    [J]. PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [10] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    [J]. Artificial Intelligence Review, 2022, 55 : 895 - 943