Hot oxidation and corrosion behaviour of boiler steel fabricated by wire arc additive manufacturing

被引:10
|
作者
Kannan A.R. [1 ]
Prasad C.D. [2 ]
Rajkumar V. [3 ,5 ]
Shanmugam N.S. [4 ]
Lee W. [1 ]
Yoon J. [1 ,6 ]
机构
[1] Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55, Hanyangdaehak-ro, Gyeonggi-do, Ansan
[2] Department of Mechanical Engineering, RV Institute of Technology and Management, Karnataka, Bengaluru
[3] Department of Mechanical Engineering, Coimbatore Institute of Engineering and Technology, Tamil Nadu, Coimbatore
[4] Department of Mechanical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli
[5] Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Tamil Nadu, Coimbatore
[6] AIDICOME Inc., 55, Hanyangdaehak-ro, Sangnok-gu, Ansan
基金
新加坡国家研究基金会;
关键词
Hot corrosion; Microstructure; SS308L; Stainless steel; Welding; Wire arc additive manufacturing;
D O I
10.1016/j.matchar.2023.113113
中图分类号
学科分类号
摘要
Boiler Steels undergo severe degradation in corrosion resistance due to oxide scale formation at elevated temperatures. In this study, the comparative hot oxidation and hot corrosion resistance of wire arc additive manufactured SS 308L (WAAM 308L) was examined in hot air and Na2SO4–60% V2O5 molten salt environments at 700 °C. The corrosion resistance at elevated temperature was analysed using thermo-kinetic curves, corrosion products, and morphology of the oxides. The hot oxidation kinetics revealed that WAAM processed SS 308L specimens has excellent resistance and the weight gain reached 3.10 mg/cm2 with thinner oxide scale formation. Hot corrosion kinetics of WAAM processed SS 308L specimens highlighted the higher weight gain (37.0 mg/cm2) in molten salt environment and is attributed to the acceleration of oxide scale formation by the salts at elevated temperatures. Also, the development of Ni3V2O8 and Fe2O3 along with the depletion of Cr2O3 significantly influenced the corrosion resistance at elevated temperatures. The findings of this study reveal the potential of WAAM to produce customized parts for high-temperature applications. © 2023 Elsevier Inc.
引用
下载
收藏
相关论文
共 50 条
  • [1] Microstructure and corrosion behaviour of structural steel fabricated by wire arc additive manufacturing (WAAM)
    Dong, Zheng
    Torbati-Sarraf, Hamidreza
    Huang, Cheng
    Xu, Ke
    Gu, Xiang-Lin
    Fu, Chuanqing
    Liu, Xingjian
    Meng, Zhou
    MATERIALS & DESIGN, 2024, 244
  • [2] Microstructure and hot corrosion performance of stainless steel 347 produced by wire arc additive manufacturing
    Kannan, A. Rajesh
    Rajkumar, V.
    Prasad, C. Durga
    Shanmugam, N. Siva
    Yoon, Jonghun
    VACUUM, 2023, 210
  • [3] Anisotropy of microstructure and corrosion resistance of 316L stainless steel fabricated by wire and arc additive manufacturing
    Wang, C.
    Zhu, P.
    Wang, F.
    Lu, Y. H.
    Shoji, T.
    CORROSION SCIENCE, 2022, 206
  • [4] Electrochemical insight into the passivity and corrosion of 316 L stainless steel fabricated through wire arc additive manufacturing
    Morshed-Behbahani, Khashayar
    Hadadzadeh, Amir
    Nasiri, Ali
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 693
  • [5] Wire arc additive manufacturing of hot work tool steel with CMT process
    Ali, Y.
    Henckell, P.
    Hildebrand, J.
    Reimann, J.
    Bergmann, J. P.
    Barnikol-Oettler, S.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 269 : 109 - 116
  • [6] Heterogeneous microstructure of duplex multilayer steel structure fabricated by wire and arc additive manufacturing
    Watanabe, Ikumu
    Chen, Ta-Te
    Taniguchi, Sachiko
    Kitano, Houichi
    MATERIALS CHARACTERIZATION, 2022, 191
  • [7] Anisotropic behavior of super duplex stainless steel fabricated by wire arc additive manufacturing
    Huang, Xianhang
    Kwok, Chi Tat
    Niu, Ben
    Luo, Jiangling
    Zou, Xiaodong
    Cao, Yi
    Yi, Jianglong
    Pan, Linlin
    Qiu, Wenfeng
    Zhang, Xueying
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 1651 - 1664
  • [8] Nanoindentation and Corrosion Behaviour of 410 Stainless Steel Fabricated Via Additive Manufacturing
    Lesufi, Miltia
    Akinwamide, Samuel Olukayode
    Makoana, Washington
    Tshabalala, Lerato
    Olubambi, Peter Apata
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (03) : 695 - 702
  • [9] Nanoindentation and Corrosion Behaviour of 410 Stainless Steel Fabricated Via Additive Manufacturing
    Miltia Lesufi
    Samuel Olukayode Akinwamide
    Washington Makoana
    Lerato Tshabalala
    Peter Apata Olubambi
    Transactions of the Indian Institute of Metals, 2023, 76 : 695 - 702
  • [10] Microstructural, Mechanical, and Corrosion Performance of Components Fabricated through Wire Arc Additive Manufacturing Process
    Sudarsan, Coomar
    Katiyar, Bhupesh Singh
    Behera, Dibya Ranjan
    Rakshit, Rahul
    Rajak, Bijoy
    Perka, Ashok Kumar
    Arora, Kanwer Singh
    Mandal, Sumantra
    Panda, Sushanta Kumar
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 33 (17) : 9163 - 9177