Rotating machinery fault classification method using multi-sensor feature extraction and fusion

被引:0
|
作者
Zhang, Qinyao [1 ]
Wen, Chenglin [2 ]
机构
[1] College of Electrical Engineering, Henan University of Technology, Zhengzhou,450000, China
[2] School of Automation, Hangzhou Dianzi University, Hangzhou,310000, China
关键词
18;
D O I
10.23940/ijpe.20.04.p9.577586
中图分类号
学科分类号
摘要
引用
收藏
页码:577 / 586
相关论文
共 50 条
  • [1] A fault diagnosis method based on feature-level fusion of multi-sensor information for rotating machinery
    Gao, Tianyu
    Yang, Jingli
    Zhang, Baoqin
    Li, Yunlu
    Zhang, Huiyuan
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [2] Application of multi-sensor information fusion in fault diagnosis of rotating machinery
    Guan, Ke
    Mei, Tao
    Wang, Deji
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 425 - 429
  • [3] A Rotating Machinery Fault Diagnosis Method Based on Multi-Sensor Fusion and ECA-CNN
    Wang, Hongxing
    Zhu, Hua
    Li, Huafeng
    [J]. IEEE ACCESS, 2023, 11 : 106443 - 106455
  • [4] Multi-branch convolutional attention network for multi-sensor feature fusion in intelligent fault diagnosis of rotating machinery
    Wu, Ke
    Li, Zirui
    Chen, Chong
    Song, Zhenguo
    Wu, Jun
    [J]. QUALITY ENGINEERING, 2024, 36 (03) : 609 - 623
  • [5] Rotating machinery fault diagnosis method based on multi-level fusion framework of multi-sensor information
    Xiao, Xiangqu
    Li, Chaoshun
    He, Hongxiang
    Huang, Jie
    Yu, Tian
    [J]. INFORMATION FUSION, 2025, 113
  • [6] Rotating Machinery Fault Diagnosis Based on Multi-sensor Information Fusion Using Graph Attention Network
    Li, Chenyang
    Kwoh, Chee Keong
    Li, Xiaoli
    Mo, Lingfei
    Yan, Ruqiang
    [J]. 2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 678 - 683
  • [7] .Fault Feature Extraction Method of Large Rotating Machinery
    Jiang, Zhanglei
    Xu, Xiaoli
    Chen, Peng
    [J]. VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT II, PTS 1-3, 2012, 226-228 : 756 - +
  • [8] Multi-Filter Clustering Fusion for Feature Selection in Rotating Machinery Fault Classification
    Mochammad, Solichin
    Noh, Yoojeong
    Kang, Young-Jin
    Park, Sunhwa
    Lee, Jangwoo
    Chin, Simon
    [J]. SENSORS, 2022, 22 (06)
  • [9] A novel multi-segment feature fusion based fault classification approach for rotating machinery
    Liang, Jiejunyi
    Zhang, Ying
    Zhong, Jian-Hua
    Yang, Haitao
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 122 : 19 - 41
  • [10] An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis
    Liu, Jie
    Hu, Youmin
    Wang, Yan
    Wu, Bo
    Fan, Jikai
    Hu, Zhongxu
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (05)