Subspace tracking for phase noise source separation in frequency combs

被引:2
|
作者
Razumov A. [1 ]
Heebøll H.R. [1 ]
Dummont M. [2 ]
Terra O. [2 ,3 ]
Dong B. [2 ]
Riebesehl J. [1 ]
Varming P. [4 ]
Pedersen J.E. [4 ]
Ros F.D.A. [1 ]
Bowers J.E. [2 ]
Zibar D. [1 ]
机构
[1] Department of Electrical and Photonics Engineering, Technical University of Denmark (DTU), Kgs. Lyngby
[2] Department of Electrical and Computer Engineering, University of California, Santa Barbara, 93106, CA
[3] Primary Length and Laser Technology Lab, National Institute of Standards, Giza
[4] NKT Photonics, Blokken 84, Birkerød
基金
欧洲研究理事会;
关键词
Compendex;
D O I
10.1364/OE.495663
中图分类号
学科分类号
摘要
It is widely acknowledged that the phase noise of an optical frequency comb primarily stems from the common mode (carrier-envelope) and the repetition rate phase noise. However, owing to technical noise sources or other intricate intra-cavity factors, residual phase noise components, distinct from the common mode and the repetition rate phase noise, may also exist. We introduce a measurement technique that combines subspace tracking and multi-heterodyne coherent detection for the separation of different phase noise sources. This method allows us to break down the overall phase noise sources associated with a specific comb-line into distinct phase noise components associated with the common mode, the repetition rate and the residual phase noise terms. The measurement method allow us, for the first time, to identify and measure residual phase noise sources of a frequency modulated mode-locked laser. © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
引用
下载
收藏
页码:34325 / 34347
页数:22
相关论文
共 50 条
  • [1] Resonant EO combs: beyond the standard phase noise model of frequency combs
    Heeboll, H.R.
    Sekhar, P.
    Riebesehl, J.
    Razumov, A.
    Heyrich, M.
    Galili, M.
    Da Ros, F.
    Diddams, S.A.
    Zibar, D.
    Optics Express, 2024, 32 (26) : 45932 - 45945
  • [2] Phase noise of electro-optic dual frequency combs
    Deakin, Callum
    Zhou, Zichuan
    Liu, Zhixin
    OPTICS LETTERS, 2021, 46 (06) : 1345 - 1348
  • [3] Phase Noise and Spectral Bandwidth of SiN Microresonator Frequency Combs
    Brasch, V.
    Herr, T.
    Pfeiffer, M. H. P.
    Jost, J. D.
    Kippenberg, T. J.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [4] Spectral dependence of phase noise of stabilized optical frequency combs
    Quraishi, Qudsia
    Diddams, Scott
    Hollberg, Leo
    ULTRAFAST PHENOMENA XV, 2007, 88 : 139 - +
  • [5] An Averaging Method for Phase Noise Studies of Quartz Phononic Frequency Combs
    Yong, Yook-Kong
    Wall, Walter
    Kirby, Deborah J.
    Kubena, Randall L.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2023, 70 (10) : 1261 - 1269
  • [6] Ultralow Noise Optical Frequency Combs
    Endo, Mamoru
    Shoji, Tyko D.
    Schibli, Thomas R.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (05)
  • [7] Phase noise analysis of the Frequency Tracking Oscillator
    Levy, R.
    Dupret, A.
    Mathias, H.
    2010 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (FCS), 2010, : 624 - 628
  • [8] Low-Phase-Noise Tenfold Frequency Multiplication Based on Integrated Optical Frequency Combs
    Lima, Eduardo Saia
    Andriolli, Nicola
    Conforti, Evandro
    Contestabile, Giampiero
    Sodre, Arismar Cerqueira, Jr.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2022, 34 (16) : 878 - 881
  • [9] Phase Noise Transfer in High-Q Quartz Phononic Frequency Combs
    Wall, Walter S.
    Kubena, Randy L.
    Yook, Yook-Kong
    Koehl, Joseph
    Joyce, Rick J.
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2020,
  • [10] Deterministic Nonlinear Transformations of Phase Noise in Quantum-Limited Frequency Combs
    Liehl, A.
    Sulzer, P.
    Fehrenbacher, D.
    Rybka, T.
    Seletskiy, D., V
    Leitenstorfer, A.
    PHYSICAL REVIEW LETTERS, 2019, 122 (20)