Modelling decision making in digital supply chains: insights from the petroleum industry

被引:0
|
作者
Covaci, Florina Livia [1 ]
Zaraté, Pascale [2 ]
机构
[1] Babeş-Bolyai University, Cluj-Napoca, Romania
[2] Toulouse University, UT1C-IRIT, Toulouse, France
来源
Kybernetes | 2020年 / 49卷 / 04期
关键词
Decision making;
D O I
暂无
中图分类号
学科分类号
摘要
Purpose: This paper aims to overcome some of the limitations of previous works regarding automated supply chain formation (SCF). Hence, it proposes an algorithm for automated SCF using multiple contract parameters. Moreover, it proposes a decision-making mechanism that provides means for incorporating risk in the decision-making process. To better emphasize the features of the proposed decision-making mechanism, the paper provides some insights from the petroleum industry. This industry has a strategic position, as it is the base for other essential activities of the economy of any country. The petroleum industry is faced with volatile feed-stock costs, cyclical product prices and seasonal final products demand. Design/methodology/approach: The authors have modeled the supply chain in terms of a cluster graph where the nodes are represented by clusters over the contract parameters that suppliers/consumers are interested in. The suppliers/consumers own utility functions and agree on multiple contract parameters by message exchange, directly with other participant agents, representing their potential buyer or seller. The agreed values of the negotiated issues are reflected in a contract which has a certain utility value for every agent. They consider uncertainties in crude oil prices and demand in petrochemical products and model the decision mechanism for a refinery by using an influence diagram. Findings: By integrating the automated SCF algorithm and a mechanism for decision support under uncertainty, the authors propose a reliable and practical decision-making model with a practical application not only in the petroleum industry but also in any other complex industry involving a multi-tier supply chain. Research limitations/implications: The limitation of this approach reveals in situations where the parameters can take values over continuous domains. In these cases, storing the preferences for every agent might need a considerable amount of memory depending on the size of the continuous domain; hence, the proposed approach might encounter efficiency issues. Practical implications: The current paper makes a step forward to the implementation of digital supply chains in the context of Industry 4.0. The proposed algorithm and decision-making mechanism become powerful tools that will enable machines to make autonomous decisions in the digital supply chain of the future. Originality/value: The current work proposes a decentralized mechanism for automated SCF. As opposed to the previous decentralized approaches, this approach translates the SCF optimization problem not as a profit maximization problem but as a utility maximization. Hence, it incorporates multiple parameters and uses utility functions to find the optimal supply chain. The current approach is closer to real life scenarios than the previous approaches that were using only cost as a mean for pairwise agents because it uses utility functions for entities in the supply chain to make decision. Moreover, this approach overcomes the limitations of previous approaches by providing means to incorporate risk in the decision-making mechanism. © 2019, Emerald Publishing Limited.
引用
收藏
页码:1213 / 1228
相关论文
共 50 条
  • [1] Modelling decision making in digital supply chains: insights from the petroleum industry
    Covaci, Florina Livia
    Zarate, Pascale
    [J]. KYBERNETES, 2020, 49 (04) : 1213 - 1228
  • [2] Evolutionary game of digital decision-making in supply chains based on system dynamics
    Zhao, Dan
    Wang, Xiaofei
    [J]. RAIRO-OPERATIONS RESEARCH, 2024, 58 (01) : 475 - 510
  • [3] Synchronous and asynchronous decision making strategies in supply chains
    Sahay, Nihar
    Ierapetritou, Marianthi
    Wassick, John
    [J]. Computers and Chemical Engineering, 2014, 71 : 116 - 129
  • [4] Synchronous and asynchronous decision making strategies in supply chains
    Sahay, Nihar
    Ierapetritou, Marianthi
    Wassick, John
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2014, 71 : 116 - 129
  • [5] COMMUNICATION & DECISION-MAKING FOR SAFETY IN SUPPLY CHAINS
    Gillespie, Caroline
    Vallmuur, Kirsten
    Haworth, Narelle
    Wishart, Darren
    [J]. INJURY PREVENTION, 2018, 24 : A214 - A215
  • [6] Synchronous and asynchronous decision making strategies in supply chains
    Sahay, Nihar
    Ierapetritou, Marianthi
    Wassick, John
    [J]. Computers and Chemical Engineering, 2014, 71 : 116 - 129
  • [7] Making supply chain traceability strategic: insights from the food industry
    Hoang, Trang T.
    Bell, John E.
    Goldsby, Thomas J.
    [J]. INTERNATIONAL JOURNAL OF PHYSICAL DISTRIBUTION & LOGISTICS MANAGEMENT, 2023, 53 (09) : 913 - 945
  • [8] Integration of vaccine supply chains with other health commodity supply chains: A framework for decision making
    Yadav, Prashant
    Lydon, Patrick
    Oswald, Julianna
    Dicko, Modibo
    Zaffran, Michel
    [J]. VACCINE, 2014, 32 (50) : 6725 - 6732
  • [9] A model for supply chains environmental performance analysis and decision making
    Tsoulfas, Giannis T.
    Pappis, Costas P.
    [J]. JOURNAL OF CLEANER PRODUCTION, 2008, 16 (15) : 1647 - 1657
  • [10] Making the most of modelling: A decision framework for the water industry
    Blackmore, J. M.
    Dandy, G. C.
    Kuczera, G.
    Rahman, J.
    [J]. 18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 3775 - 3781