Programmable microfluidic manipulations for biomedical applications

被引:0
|
作者
Zhang D. [1 ,2 ]
Li W. [3 ]
Shang Y. [2 ]
Shang L. [1 ,3 ]
机构
[1] Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology, Institutes of Biomedical Sciences), Fu
[2] Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing
[3] Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, Wenzhou
来源
Engineered Regeneration | 2022年 / 3卷 / 03期
基金
中国国家自然科学基金;
关键词
Biochemical assays; Fluid manipulation; Medical diagnostics; Microfluidics; Programmable control;
D O I
10.1016/j.engreg.2022.06.001
中图分类号
学科分类号
摘要
Fluid manipulation plays an important role in biomedical applications such as biochemical assays, medical diagnostics, and drug development. Programmable fluidic manipulation at the microscale is highly desired in both fundamental and practical aspects. In this paper, we summarize some of the latest studies that achieve programmable fluidic manipulation through intricate capillaric circuits design, construction of biomimetic metasurface, and responsive surface wettability control. We highlight the working principle of each system and concisely discuss their design criterion, technical improvements, and implications for future study. We envision that with multidisciplinary efforts, microfluidics would continue to bring vast opportunities to biomedical fields and make contributions to human health. © 2022 The Authors
引用
收藏
页码:258 / 261
页数:3
相关论文
共 50 条
  • [1] Microfluidic Devices for Biomedical Applications: Biomedical Microfluidic Devices 2019
    Oh, Kwang W.
    MICROMACHINES, 2020, 11 (04)
  • [2] Microfluidic devices for biomedical applications
    Lysko, Jan M.
    Pijanowska, Dorota
    Baraniecka, Anna
    Nieprzecki, Marek
    Grabiec, Piotr
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (3A): : 212 - 214
  • [3] Microfluidic Formulation for Biomedical Applications
    Trinh, Kieu The Loan
    PHARMACEUTICALS, 2023, 16 (11)
  • [4] A DIGITAL MICROFLUIDIC PROCESSOR FOR BIOMEDICAL APPLICATIONS
    Lai, Kelvin Yi-Tse
    Yang, Yu-Tao
    Wang, Gary
    Lu, Yi-Wen
    Lee, Chen-Yi
    2013 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2013, : 54 - 58
  • [5] Biomedical Applications of Microfluidic Devices: A Review
    Gharib, Ghazaleh
    Bütün, İsmail
    Muganlı, Zülâl
    Kozalak, Gül
    Namlı, İlayda
    Sarraf, Seyedali Seyedmirzaei
    Ahmadi, Vahid Ebrahimpour
    Toyran, Erçil
    van Wijnen, Andre J.
    Koşar, Ali
    Biosensors, 2022, 12 (11):
  • [6] Biomedical Applications of Microfluidic Devices: A Review
    Gharib, Ghazaleh
    Butun, Ismail
    Muganli, Zulal
    Kozalak, Gul
    Namli, Ilayda
    Sarraf, Seyedali Seyedmirzaei
    Ahmadi, Vahid Ebrahimpour
    Toyran, Ercil
    van Wijnen, Andre J.
    Kosar, Ali
    BIOSENSORS-BASEL, 2022, 12 (11):
  • [7] Microfluidic Synthesis of Nanomaterials for Biomedical Applications
    Li, Li-Li
    Li, Xiaodong
    Wang, Hao
    SMALL METHODS, 2017, 1 (08):
  • [8] Microfluidic fabrication of microparticles for biomedical applications
    Li, Wen
    Zhang, Liyuan
    Ge, Xuehui
    Xu, Biyi
    Zhang, Weixia
    Qu, Liangliang
    Choi, Chang-Hyung
    Xu, Jianhong
    Zhang, Afang
    Lee, Hyomin
    Weitz, David A.
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (15) : 5646 - 5683
  • [9] Microfluidic synthesis of nanomaterials for biomedical applications
    Huang, Yanjuan
    Liu, Chao
    Feng, Qiang
    Sun, Jiashu
    NANOSCALE HORIZONS, 2023, 8 (12) : 1610 - 1627
  • [10] Microfluidic On-Chip for Biomedical Applications
    Grenier, K.
    Dubuc, D.
    Chen, T.
    Chretiennot, T.
    Poupot, M.
    Fournie, J-J.
    2011 IEEE BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING (BCTM), 2011, : 129 - 132