MDIO: Open-source format for multidimensional energy data

被引:0
|
作者
Sansal A. [1 ]
Kainkaryam S. [1 ]
Lasscock B. [1 ]
Valenciano A. [1 ]
机构
[1] TGS, Houston, TX
来源
Leading Edge | 2023年 / 42卷 / 07期
关键词
artificial intelligence; cloud computing; parallel;
D O I
10.1190/tle42070465.1
中图分类号
学科分类号
摘要
MDIO is a fully open-source data storage format that enables computational workflows for various high-dimensional energy data sets including seismic data and wind models. Designed to be efficient and flexible, MDIO provides interoperable software infrastructure with existing energy data standards. It leverages an open-source format called Zarr to enable data usage in the cloud and on-premises file systems. An overview of the data model and schema for MDIO is provided, and an open-source Python library developed to work with MDIO data is demonstrated. We explain how MDIO supports different computational workflows and discuss applications for data management, seismic imaging, machine learning, wind resource assessment, and real-time seismic visualization. Overall, MDIO gives researchers, practitioners, and developers in the energy sector a standardized and open approach to managing and sharing multidimensional energy data. © 2023 by The Society of Exploration Geophysicists.
引用
收藏
页码:465 / 473
页数:8
相关论文
共 50 条
  • [1] Big data: open-source format needed to aid wiki collaboration
    Lee, Tin-Lap
    [J]. NATURE, 2008, 455 (7212) : 461 - 461
  • [2] Big data: open-source format needed to aid wiki collaboration
    Tin-Lap Lee
    [J]. Nature, 2008, 455 : 461 - 461
  • [3] Multiscale Electrophysiology Format: An Open-source Electrophysiology Format Using Data Compression, Encryption, and Cyclic Redundancy Check
    Brinkmann, Benjamin H.
    Bower, Mark R.
    Stengel, Keith A.
    Worrell, Gregory A.
    Stead, Matt
    [J]. 2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 7083 - +
  • [4] Tsdat: An Open-Source Data Standardization Framework for Marine Energy and Beyond
    Lansing, Carina
    Levin, Maxwell
    Sivaraman, Chitra
    Fao, Rebecca
    Driscoll, Frederick
    [J]. OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [5] RELIABLE DATA PROFILING FOR ENERGY COMMUNITIES - REVIEW OF OPEN-SOURCE APPROACHES
    Kairisa, E.
    Mutule, A.
    [J]. LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2023, 60 (02) : 17 - 30
  • [6] Open-Source Data and the Study of Homicide
    Parkin, William S.
    Gruenewald, Jeff
    [J]. JOURNAL OF INTERPERSONAL VIOLENCE, 2017, 32 (18) : 2693 - 2723
  • [7] Open-source tools for data mining
    Zupan, Blaz
    Demsar, Janez
    [J]. CLINICS IN LABORATORY MEDICINE, 2008, 28 (01) : 37 - +
  • [8] OsiriX: An open-source software for navigating in multidimensional DICOM images
    Rosset, A
    Spadola, L
    Ratib, O
    [J]. JOURNAL OF DIGITAL IMAGING, 2004, 17 (03) : 205 - 216
  • [9] OsiriX: An Open-Source Software for Navigating in Multidimensional DICOM Images
    Antoine Rosset
    Luca Spadola
    Osman Ratib
    [J]. Journal of Digital Imaging, 2004, 17 : 205 - 216
  • [10] An Open-Source Multi-Format Framework for Pseudonymization and Anonymization of WSI
    Franz, Michael
    Bisson, Tom
    Isil, Dogan O.
    Romberg, Daniel
    Jansen, Christoph
    Homeyer, Andre
    Hufnagl, Peter
    Zerbe, Norman
    [J]. LABORATORY INVESTIGATION, 2023, 103 (03) : S1292 - S1292