Recognition of 3D Object Based on Multi-View Recurrent Neural Networks

被引:0
|
作者
Dong, Shuai [1 ]
Li, Wen-Sheng [1 ]
Zhang, Wen-Qiang [1 ]
Zou, Kun [1 ]
机构
[1] Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan,Guangdong,528406, China
关键词
Image retrieval - Convolutional neural networks - Object recognition;
D O I
10.12178/1001-0548.2019017
中图分类号
学科分类号
摘要
Multi-view convolutional neural networks (MVCNN) is more accurate and faster than those methods based on state-of-the-art 3D shape descriptors in 3D object recognition tasks. However, the input of MVCNN are views rendered from cameras at fixed positions, which is not the case of most applications. Furthermore, MVCNN uses max-pooling operation to fuse multi-view features and the information of original features may be lost. To address those two problems, a new recognition method of 3D objects based on multi-view recurrent neural networks (MVRNN) is proposed based on MVCNN with improvements on three aspects. First, a new item which is defined as the measure of discrimination is introduced into the cross-entropy loss function to enhance the discrimination of features from different objects. Second, a recurrent neural networks (RNN) is used to fuse multi-view features from free positions into a compact one, instead of the max-pooling operation in MVCNN. RNN can keep the completeness of information about appearance feature. At last, single view feature from free positon is matched with fused features via a bi-classification network to attain fine-grained recognition of 3D objects. Experiments are conducted on the open dataset ModelNet and the private dataset MV3D separately to validate the performance of MVRNN. The results show that MVRNN can exact multi-view features with higher degree of discrimination, and achieve higher accuracy than MVCNN on both datasets. © 2020, Editorial Board of Journal of the University of Electronic Science and Technology of China. All right reserved.
引用
收藏
页码:269 / 275
相关论文
共 50 条
  • [1] 3D object recognition based on pairwise Multi-view Convolutional Neural Networks
    Gao, Z.
    Wang, D. Y.
    Xue, Y. B.
    Xu, G. P.
    Zhang, H.
    Wang, Y. L.
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 305 - 315
  • [2] 3D object retrieval based on multi-view convolutional neural networks
    Xi-Xi Li
    Qun Cao
    Sha Wei
    [J]. Multimedia Tools and Applications, 2017, 76 : 20111 - 20124
  • [3] 3D object retrieval based on multi-view convolutional neural networks
    Li, Xi-Xi
    Cao, Qun
    Wei, Sha
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (19) : 20111 - 20124
  • [4] Multi-view Convolutional Neural Networks for 3D Shape Recognition
    Su, Hang
    Maji, Subhransu
    Kalogerakis, Evangelos
    Learned-Miller, Erik
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 945 - 953
  • [5] Multi-View 3D Face Reconstruction with Deep Recurrent Neural Networks
    Dou, Pengfei
    Kakadiaris, Ioannis A.
    [J]. 2017 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2017, : 483 - 492
  • [6] Multi-view 3D face reconstruction with deep recurrent neural networks
    Dou, Pengfei
    Kakadiaris, Ioannis A.
    [J]. IMAGE AND VISION COMPUTING, 2018, 80 : 80 - 91
  • [7] MULTI-VIEW GAIT RECOGNITION USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Wolf, Thomas
    Babaee, Mohammadreza
    Rigoll, Gerhard
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4165 - 4169
  • [8] Learning Relationships for Multi-View 3D Object Recognition
    Yang, Ze
    Wang, Liwei
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7504 - 7513
  • [9] Hierarchical Graph Attention Based Multi-View Convolutional Neural Network for 3D Object Recognition
    Zeng, Hui
    Zhao, Tianmeng
    Cheng, Ruting
    Wang, Fuzhou
    Liu, Jiwei
    [J]. IEEE ACCESS, 2021, 9 (09): : 33323 - 33335
  • [10] Fine-grained Recognition of 3D Shapes Based on Multi-view Recurrent Neural Network
    Dong, Shuai
    Zou, Kun
    Li, Wensheng
    [J]. ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 152 - 156