Computational fluid dynamics simulation of the melting process in the fused filament fabrication additive manufacturing technique

被引:64
|
作者
Phan D.D. [1 ]
Horner J.S. [1 ]
Swain Z.R. [2 ]
Beris A.N. [1 ]
Mackay M.E. [1 ,2 ]
机构
[1] Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, 19716, DE
[2] Department of Materials Science and Engineering, University of Delaware, Newark, 19716, DE
来源
Additive Manufacturing | 2020年 / 33卷
关键词
3D printing; Fused deposition modeling; Fused filament fabrication; Material extrusion; Numerical simulation;
D O I
10.1016/j.addma.2020.101161
中图分类号
学科分类号
摘要
Numerical simulation is used to understand the melting and pressurization mechanism in fused filament fabrication (FFF). The results show the incoming fiber melts axisymmetrically, forming a cone of unmelted material in the center surrounded by melted polymer. Details of the simulation reveal that a recirculating vortex of melted polymer is formed at the fiber entrance to the hot end. The large viscosity within this vortex acts to effectively seal the system against back-pressures of order 1000 psi (10 MPa), which are typical under standard printing conditions. The Generalized Newtonian Fluid (GNF) model was appropriate for simulation within the region that melts the fiber, however, a viscoelastic model, the Phan-Thien-Tanner (PTT) model, was required to capture flow within the nozzle. This is due to the presence of an elongational flow as molten material transitions from the melting region (diameter of 3 mm) to the nozzle at the exit (diameter of 0.5 mm). Remarkably, almost half the pressure drop occurs over the short capillary (0.5 mm in length) attached to the end of the converging flow region. Increased manufacturing rates are limited by high pressures, necessitating more consideration in the nozzle design of future FFF printers. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [1] Computational fluid dynamics simulation of the melting process in the fused filament fabrication additive manufacturing technique
    Phan, David D.
    Horner, Jeffrey S.
    Swain, Zachary R.
    Beris, Antony N.
    Mackay, Michael E.
    ADDITIVE MANUFACTURING, 2020, 33
  • [2] In-line monitoring of the Fused Filament Fabrication additive manufacturing process
    Forster, R.
    Feteira, A.
    Soulioti, D.
    Grammatikos, S.
    Kordatos, E.
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XVII, 2023, 12487
  • [3] DESIGN FOR FUSED FILAMENT FABRICATION ADDITIVE MANUFACTURING
    Steuben, John
    Van Bossuyt, Douglas L.
    Turner, Cameron
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 4, 2016,
  • [4] Additive manufacturing of zirconia ceramic by fused filament fabrication
    Guan, Zhiheng
    Yang, Xiaole
    Liu, Peng
    Xu, Xiewen
    Li, Yuanbing
    Yang, Xianfeng
    CERAMICS INTERNATIONAL, 2023, 49 (17) : 27742 - 27749
  • [5] Gravity Augmented Fused Filament Fabrication Additive Manufacturing
    Huss, John M.
    Erdman, Arthur G.
    JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME, 2023, 17 (02):
  • [6] A Framework for Multivariate Statistical Quality Monitoring of Additive Manufacturing: Fused Filament Fabrication Process
    Alatefi, Moath
    Al-Ahmari, Abdulrahman M.
    AlFaify, Abdullah Yahia
    Saleh, Mustafa
    PROCESSES, 2023, 11 (04)
  • [7] Hybrid Additive Manufacturing of Fused Filament Fabrication and Ultrasonic Consolidation
    Wu, Wenzheng
    Wang, Haiming
    Wang, Jiaqi
    Liu, Qingping
    Zhang, Zheng
    Li, Ke
    Gong, Yuhan
    Zhao, Ji
    Ren, Luquan
    Li, Guiwei
    POLYMERS, 2022, 14 (12)
  • [8] Additive manufacturing of thermoelectric materials via fused filament fabrication
    Oztan, Cagri
    Ballikaya, Sedat
    Ozgun, Umit
    Karkkainen, Ryan
    Celik, Emrah
    APPLIED MATERIALS TODAY, 2019, 15 : 77 - 82
  • [9] Renewable Nanocomposites for Additive Manufacturing Using Fused Filament Fabrication
    Herrero, Manuel
    Peng, Fang
    Nunez Carrero, Karina C.
    Carlos Merino, Juan
    Vogt, Bryan D.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (09): : 12393 - +
  • [10] Computational Fluid Dynamics Simulation in the Cement Manufacturing Process
    Coble, Kyle
    2018 IEEE-IAS/PCA CEMENT INDUSTRY CONFERENCE (IAS/PCA), 2018,