Asymptotic Study of Stochastic Adaptive Algorithms in Non-convex Landscape

被引:0
|
作者
Gadat, Sébastien [1 ]
Gavra, Ioana [2 ]
机构
[1] Toulouse School of Economics Université Toulouse I Capitole Esplanade de l’Université, Toulouse,31080, France
[2] Institut Universitaire de FranceIRMAR, Université de Rennes, 2 Place du recteur Henri Le Moal, Rennes,35043, France
关键词
Adaptive algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Asymptotic Study of Stochastic Adaptive Algorithms in Non-convex Landscape
    Gadat, Sebastien
    Gavra, Ioana
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [2] Adaptive algorithms for scalar non-convex variational problems
    Carstensen, C
    Plechac, P
    APPLIED NUMERICAL MATHEMATICS, 1998, 26 (1-2) : 203 - 216
  • [3] Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
    Chen, Ruijuan
    Tang, Xiaoquan
    Li, Xiuting
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [4] Asynchronous Stochastic Frank-Wolfe Algorithms for Non-Convex Optimization
    Gu, Bin
    Xian, Wenhan
    Huang, Heng
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 737 - 743
  • [5] A new use of the Kurdyka-Lojasiewicz property to study asymptotic behaviours of some stochastic optimization algorithms in a non-convex differentiable framework
    Fest, Jean-Baptiste
    arXiv, 2023,
  • [6] THE LANDSCAPE OF NON-CONVEX QUADRATIC FEASIBILITY
    Bower, Amanda
    Jain, Lalit
    Balzano, Laura
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 3974 - 3978
  • [7] Asymptotic study on a soft thin layer: The non-convex case
    Lebon, F.
    Rizzoni, R.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2008, 15 (01) : 12 - 20
  • [8] Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex Parameter
    Allen-Zhu, Zeyuan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [9] Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems
    Xu, Yi
    Jin, Rong
    Yang, Tianbao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [10] Accelerated algorithms for convex and non-convex optimization on manifolds
    Lin, Lizhen
    Saparbayeva, Bayan
    Zhang, Michael Minyi
    Dunson, David B.
    MACHINE LEARNING, 2025, 114 (03)